12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A historical review of the techniques of recovery of parasites for their detection in human stools

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the early 20 th century, the detection of intestinal parasites has improved with the development of several techniques for parasitic structures recovery and identification, which differ in sensitivity, specificity, practicality, cost, and infrastructure demand. This study aims to review, in chronological order, the stool examination techniques and discuss their advantages, limitations, and perspectives, and to provide professionals and specialists in this field with data that lays a foundation for critical analysis on the use of such procedures. The concentration procedures that constitute the main techniques applied in routine research and in parasitological kits are a) spontaneous sedimentation; b) centrifugation-sedimentation with formalin-ethyl acetate; and c) flotation with zinc sulfate solution. While selecting a technique, one should consider the purpose of its application and the technical-operational, biological, and physicochemical factors inherent in the procedures used in stool processing, which may restrict its use. These intrinsic limitations may have undergone procedural changes driven by scientific and technological development and by development of alternative methods, which now contribute to the improvement of diagnostic accuracy.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis

          Background Foodborne diseases are globally important, resulting in considerable morbidity and mortality. Parasitic diseases often result in high burdens of disease in low and middle income countries and are frequently transmitted to humans via contaminated food. This study presents the first estimates of the global and regional human disease burden of 10 helminth diseases and toxoplasmosis that may be attributed to contaminated food. Methods and Findings Data were abstracted from 16 systematic reviews or similar studies published between 2010 and 2015; from 5 disease data bases accessed in 2015; and from 79 reports, 73 of which have been published since 2000, 4 published between 1995 and 2000 and 2 published in 1986 and 1981. These included reports from national surveillance systems, journal articles, and national estimates of foodborne diseases. These data were used to estimate the number of infections, sequelae, deaths, and Disability Adjusted Life Years (DALYs), by age and region for 2010. These parasitic diseases, resulted in 48.4 million cases (95% Uncertainty intervals [UI] of 43.4–79.0 million) and 59,724 (95% UI 48,017–83,616) deaths annually resulting in 8.78 million (95% UI 7.62–12.51 million) DALYs. We estimated that 48% (95% UI 38%-56%) of cases of these parasitic diseases were foodborne, resulting in 76% (95% UI 65%-81%) of the DALYs attributable to these diseases. Overall, foodborne parasitic disease, excluding enteric protozoa, caused an estimated 23.2 million (95% UI 18.2–38.1 million) cases and 45,927 (95% UI 34,763–59,933) deaths annually resulting in an estimated 6.64 million (95% UI 5.61–8.41 million) DALYs. Foodborne Ascaris infection (12.3 million cases, 95% UI 8.29–22.0 million) and foodborne toxoplasmosis (10.3 million cases, 95% UI 7.40–14.9 million) were the most common foodborne parasitic diseases. Human cysticercosis with 2.78 million DALYs (95% UI 2.14–3.61 million), foodborne trematodosis with 2.02 million DALYs (95% UI 1.65–2.48 million) and foodborne toxoplasmosis with 825,000 DALYs (95% UI 561,000–1.26 million) resulted in the highest burdens in terms of DALYs, mainly due to years lived with disability. Foodborne enteric protozoa, reported elsewhere, resulted in an additional 67.2 million illnesses or 492,000 DALYs. Major limitations of our study include often substantial data gaps that had to be filled by imputation and suffer from the uncertainties that surround such models. Due to resource limitations it was also not possible to consider all potentially foodborne parasites (for example Trypanosoma cruzi). Conclusions Parasites are frequently transmitted to humans through contaminated food. These estimates represent an important step forward in understanding the impact of foodborne diseases globally and regionally. The disease burden due to most foodborne parasites is highly focal and results in significant morbidity and mortality among vulnerable populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Urbanisation and infectious diseases in a globalised world

            Summary The world is becoming urban. The UN predicts that the world's urban population will almost double from 3·3 billion in 2007 to 6·3 billion in 2050. Most of this increase will be in developing countries. Exponential urban growth is having a profound effect on global health. Because of international travel and migration, cities are becoming important hubs for the transmission of infectious diseases, as shown by recent pandemics. Physicians in urban environments in developing and developed countries need to be aware of the changes in infectious diseases associated with urbanisation. Furthermore, health should be a major consideration in town planning to ensure urbanisation works to reduce the burden of infectious diseases in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans.

              Accurate diagnosis of parasitic infections is of pivotal importance for both individual patient management and population-based studies, such as drug efficacy trials and surveillance of parasitic disease control and elimination programs, in both human and veterinary public health. In this study, we present protocols for the FLOTAC basic, dual and double techniques, which are promising new multivalent, sensitive, accurate and precise methods for qualitative and quantitative copromicroscopic analysis. These various methods make use of the FLOTAC apparatus, a cylindrical device with two 5-ml flotation chambers, which allows up to 1 g of stool to be prepared for microscopic analysis. Compared with currently more widely used diagnostic methods for parasite detection in animals (e.g., McMaster and Wisconsin techniques) and humans (e.g., Kato-Katz and ether-based concentration techniques), the FLOTAC techniques show higher sensitivity and accuracy. All FLOTAC techniques can be performed on fresh fecal material as well as preserved stool samples, and require approximately 12-15 min of preparation time before microscopic analysis.
                Bookmark

                Author and article information

                Journal
                Rev Soc Bras Med Trop
                Rev. Soc. Bras. Med. Trop
                rsbmt
                Revista da Sociedade Brasileira de Medicina Tropical
                Sociedade Brasileira de Medicina Tropical - SBMT
                0037-8682
                1678-9849
                01 June 2020
                2020
                : 53
                : e20190535
                Affiliations
                [1 ]Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP, Brasil.
                [2 ]Universidade Estadual Paulista, Faculdade de Medicina Veterinária, Departamento de Apoio, Produção e Saúde Animal, Araçatuba, SP, Brasil.
                [3 ]Immunocamp Ciência e Tecnologia, Campinas, SP, Brasil.
                [4 ]Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP, Brasil.
                Author notes
                Corresponding author: Felipe Augusto Soares. e-mail: biofesoares@ 123456gmail.com

                Authors’ contribution: FAS: conception, acquisition of data, interpretation and writing; ANB, BMS, SHNL, SLR, WBN, SVI and CTNS: contributed to the critical review, translation and writing the manuscript; KDSB, AXF and JFG: contributed to the review, discussion and writing the final version of the manuscript.

                Conflict of Interest: The authors declare that there is no conflict of interest.

                Author information
                http://orcid.org/0000-0001-6262-5194
                Article
                00203
                10.1590/0037-8682-0535-2019
                7269538
                32491097
                1e30e970-319f-400a-bb14-a4389a3874eb

                This is an open-access article distributed under the terms of the Creative Commons Attribution License

                History
                : 13 December 2019
                : 30 April 2020
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 122
                Categories
                Review Article

                parasitology,intestinal diseases,historical aspects,routine diagnostic test

                Comments

                Comment on this article