8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraventricular Hemorrhage in Very Preterm Infants: A Comprehensive Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Germinal matrix-intraventricular-intraparenchymal hemorrhage (GMH-IVH-IPH) is a major complication of very preterm births before 32 weeks of gestation (WG). Despite progress in clinical management, its incidence remains high before 27 WG. In addition, severe complications may occur such as post-hemorrhagic hydrocephalus and/or periventricular intraparenchymal hemorrhage. IVH is strongly associated with subsequent neurodevelopmental disabilities. For this review, an automated literature search and a clustering approach were applied to allow efficient filtering as well as topic clusters identification. We used a programmatic literature search for research articles related to intraventricular hemorrhage in preterms that were published between January 1990 and February 2020. Two queries ((Intraventricular hemorrhage) AND (preterm)) were used in PubMed. This search resulted in 1093 articles. The data manual curation left 368 documents that formed 12 clusters. The presentation and discussion of the clusters provide a comprehensive overview of existing data on the pathogenesis, complications, neuroprotection and biomarkers of GMH-IVH-IPH in very preterm infants. Clinicians should consider that the GMH-IVH-IPH pathogenesis is mainly due to developmental immaturity of the germinal matrix and cerebral autoregulation impairment. New multiomics investigations of intraventricular hemorrhage could foster the development of predictive biomarkers for the benefit of very preterm newborns.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Angiopoietins in angiogenesis.

          Tie-1 and Tie-2 tyrosine kinase receptors are expressed specifically on vascular endothelial cells and on a certain subtype of macrophages implicated in angiogenesis, thus, they have been a major focus of angiogenesis research. Tie-1 and Tie-2 are essential for vascular maturation during developmental, physiological and pathological angiogenesis. Angiopoietin 1-4 (Ang-1-4) have been identified as bona fide ligands of the Tie-2 receptor, while Tie-1 remains an orphan receptor which is able to heterodimerize with Tie-2 and to modulate Tie-2 signal transduction. The most exhaustively studied angiopoietins are Ang-1 and Ang-2. Ang-1 is a critical player in vessel maturation and it mediates migration, adhesion and survival of endothelial cells. Ang-2 disrupts the connections between the endothelium and perivascular cells and promotes cell death and vascular regression. Yet, in conjunction with VEGF, Ang-2 promotes neo-vascularization. Hence, angiopoietins exert crucial roles in the angiogenic switch during tumor progression, and increased expression of Ang-2 relative to Ang-1 in tumors correlates with poor prognosis. Its central role in the regulation of physiological and pathological angiogenesis makes the angiopoietin/Tie signaling pathway a therapeutically attractive target for the treatment of vascular disease and cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intraventricular hemorrhage in premature infants: mechanism of disease.

            Intraventricular hemorrhage (IVH) is a major complication of prematurity. IVH typically initiates in the germinal matrix, which is a richly vascularized collection of neuronal-glial precursor cells in the developing brain. The etiology of IVH is multifactorial and is primarily attributed to the intrinsic fragility of the germinal matrix vasculature and the disturbance in the cerebral blood flow (CBF). Although this review broadly describes the pathogenesis of IVH, the main focus is on the recent development in molecular mechanisms that elucidates the fragility of the germinal matrix vasculature. The microvasculature of the germinal matrix is frail because of an abundance of angiogenic blood vessels that exhibit paucity of pericytes, immaturity of basal lamina, and deficiency of glial fibrillary acidic protein (GFAP) in the ensheathing astrocytes endfeet. High VEGF and angiopoietin-2 levels activate a rapid angiogenesis in the germinal matrix. The elevation of these growth factors may be ascribed to a relative hypoxia of the germinal matrix perhaps resulting from high metabolic activity and oxygen consumption of the neural progenitor cells. Hence, the rapid stabilization of the angiogenic vessels and the restoration of normal CBF on the first day of life are potential strategies to prevent IVH in premature infants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.

              Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                31 July 2020
                August 2020
                : 9
                : 8
                : 2447
                Affiliations
                [1 ]Department of Pediatric Neurosurgery, Rouen University Hospital, 76000 Rouen, France; vianney.gilard@ 123456chu-rouen.fr
                [2 ]Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France; abdellah.tebani@ 123456yahoo.com
                [3 ]Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France; stephane.marret@ 123456chu-rouen.fr
                [4 ]Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France
                Author notes
                Author information
                https://orcid.org/0000-0002-8901-2678
                https://orcid.org/0000-0002-2858-148X
                Article
                jcm-09-02447
                10.3390/jcm9082447
                7465819
                32751801
                1e65b420-5c11-481d-86af-a8265ed7bfc8
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 June 2020
                : 25 July 2020
                Categories
                Review

                intraventricular hemorrhage,germinal matrix,preterm,neonates,post-hemorrhagic hydrocephalus

                Comments

                Comment on this article