15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit + cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cell (SC) therapy for ischemic cardiomyopathy is hampered by poor survival of the implanted cells. Recently, SC-derived exosomes have been shown to facilitate cell proliferation and survival by transporting various proteins and non-coding RNAs (such as microRNAs and lncRNAs). In this study, miR-21 was highly enriched in exosomes derived from bone marrow mesenchymal stem cells (MSCs). Interestingly, exosomes collected from hydrogen peroxide (H 2O 2)-treated MSCs (H-Exo) contained higher levels of miR-21 than exosomes released from MSCs under normal conditions (N-Exo). The pre-treatment of C-kit + cardiac stem cells (CSCs) with H-Exos resulted in significantly increased levels of miR-21 and phosphor-Akt (pAkt) and decreased levels of PTEN, which is a known target of miR-21. AnnexinV-FITC/PI analysis further demonstrated that the degree of oxidative stress-induced apoptosis was markedly lower in H-Exo-treated C-kit + CSCs than that in N-Exo-treated cells. These protective effects could be blocked by both a miR-21 inhibitor and the PI3K/Akt inhibitor LY294002. Therefore, exosomal miR-21 derived from H 2O 2-treated MSCs could be transported to C-kit + cardiac stem cells to functionally inhibit PTEN expression, thereby activating PI3K/AKT signaling and leading to protection against oxidative stress-triggered cell death. Thus, exosomes derived from MSCs could be used as a new therapeutic vehicle to facilitate C-kit + CSC therapies in the ischemic myocardium.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.

          Mapping of homozygous deletions on human chromosome 10q23 has led to the isolation of a candidate tumor suppressor gene, PTEN, that appears to be mutated at considerable frequency in human cancers. In preliminary screens, mutations of PTEN were detected in 31% (13/42) of glioblastoma cell lines and xenografts, 100% (4/4) of prostate cancer cell lines, 6% (4/65) of breast cancer cell lines and xenografts, and 17% (3/18) of primary glioblastomas. The predicted PTEN product has a protein tyrosine phosphatase domain and extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions. These homologies suggest that PTEN may suppress tumor cell growth by antagonizing protein tyrosine kinases and may regulate tumor cell invasion and metastasis through interactions at focal adhesions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adult cardiac stem cells are multipotent and support myocardial regeneration.

            The notion of the adult heart as terminally differentiated organ without self-renewal potential has been undermined by the existence of a subpopulation of replicating myocytes in normal and pathological states. The origin and significance of these cells has remained obscure for lack of a proper biological context. We report the existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells. They are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells. When injected into an ischemic heart, these cells or their clonal progeny reconstitute well-differentiated myocardium, formed by blood-carrying new vessels and myocytes with the characteristics of young cells, encompassing approximately 70% of the ventricle. Thus, the adult heart, like the brain, is mainly composed of terminally differentiated cells, but is not a terminally differentiated organ because it contains stem cells supporting its regeneration. The existence of these cells opens new opportunities for myocardial repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing.

              : Excessive scar formation caused by myofibroblast aggregations is of great clinical importance during skin wound healing. Studies have shown that mesenchymal stem cells (MSCs) can promote skin regeneration, but whether MSCs contribute to scar formation remains undefined. We found that umbilical cord-derived MSCs (uMSCs) reduced scar formation and myofibroblast accumulation in a skin-defect mouse model. We found that these functions were mainly dependent on uMSC-derived exosomes (uMSC-Exos) and especially exosomal microRNAs. Through high-throughput RNA sequencing and functional analysis, we demonstrated that a group of uMSC-Exos enriched in specific microRNAs (miR-21, -23a, -125b, and -145) played key roles in suppressing myofibroblast formation by inhibiting the transforming growth factor-β2/SMAD2 pathway. Finally, using the strategy we established to block miRNAs inside the exosomes, we showed that these specific exosomal miRNAs were essential for the myofibroblast-suppressing and anti-scarring functions of uMSCs both in vitro and in vivo. Our study revealed a novel role of exosomal miRNAs in uMSC-mediated therapy, suggesting that the clinical application of uMSC-derived exosomes might represent a strategy to prevent scar formation during wound healing.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Writing – review & editing
                Role: Writing – original draft
                Role: Data curation
                Role: Validation
                Role: Writing – review & editing
                Role: Software
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                14 February 2018
                2018
                : 13
                : 2
                : e0191616
                Affiliations
                [001]Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
                University of Cincinnati College of Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-5316-2351
                Article
                PONE-D-17-33477
                10.1371/journal.pone.0191616
                5812567
                29444190
                1e66800a-2868-44d3-a480-08d39ec7d582
                © 2018 Shi et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 September 2017
                : 8 January 2018
                Page count
                Figures: 8, Tables: 0, Pages: 23
                Funding
                Funded by: the National Natural Science Foundation of China
                Award ID: 81360021
                Award Recipient :
                This study was supported by a grant from the National Natural Science Foundation of China (Grant No. 81360021).
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Death
                Apoptosis
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Exosomes
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Mesenchymal Stem Cells
                Biology and Life Sciences
                Cell Biology
                Oxidative Stress
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                MicroRNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                MicroRNAs
                Research and Analysis Methods
                Spectrum Analysis Techniques
                Spectrophotometry
                Cytophotometry
                Flow Cytometry
                Medicine and Health Sciences
                Clinical Genetics
                Stem Cell Therapy
                Research and Analysis Methods
                Microscopy
                Light Microscopy
                Fluorescence Microscopy
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article