Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TNF Drives Monocyte Dysfunction with Age and Results in Impaired Anti-pneumococcal Immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monocyte phenotype and output changes with age, but why this occurs and how it impacts anti-bacterial immunity are not clear. We found that, in both humans and mice, circulating monocyte phenotype and function was altered with age due to increasing levels of TNF in the circulation that occur as part of the aging process. Ly6C + monocytes from old (18–22 mo) mice and CD14 +CD16 + intermediate/inflammatory monocytes from older adults also contributed to this “age-associated inflammation” as they produced more of the inflammatory cytokines IL6 and TNF in the steady state and when stimulated with bacterial products. Using an aged mouse model of pneumococcal colonization we found that chronic exposure to TNF with age altered the maturity of circulating monocytes, as measured by F4/80 expression, and this decrease in monocyte maturation was directly linked to susceptibility to infection. Ly6C + monocytes from old mice had higher levels of CCR2 expression, which promoted premature egress from the bone marrow when challenged with Streptococcus pneumoniae. Although Ly6C + monocyte recruitment and TNF levels in the blood and nasopharnyx were higher in old mice during S. pneumoniae colonization, bacterial clearance was impaired. Counterintuitively, elevated TNF and excessive monocyte recruitment in old mice contributed to impaired anti-pneumococcal immunity since bacterial clearance was improved upon pharmacological reduction of TNF or Ly6C + monocytes, which were the major producers of TNF. Thus, with age TNF impairs inflammatory monocyte development, function and promotes premature egress, which contribute to systemic inflammation and is ultimately detrimental to anti-pneumococcal immunity.

          Author Summary

          As we age, levels of inflammatory cytokines in the blood and tissues increase. Although this appears to be an inevitable part of aging, it ultimately contributes to declining health. Epidemiological studies indicate that older adults with higher than age-average levels of inflammatory cytokines are at increased risk of acquiring, becoming hospitalized with and dying of Streptococcus pneumoniae pneumonia but how age-associated inflammation increased susceptibility to was not entirely clear. We demonstrate that the increase in the inflammatory cytokine TNF that occurs with age cause monocytes to leave the bone marrow prematurely and these immature monocytes produce more inflammatory cytokines when stimulated with bacterial products, thus further increasing levels of inflammatory cytokines in the blood. Furthermore, although old mice have higher levels of these inflammatory monocytes arriving at the site of S. pneumoniae, they are not able to clear the bacteria. By pharmacologically or genetically removing the inflammatory cytokine TNF or reducing the number of inflammatory monocytes we were able to restore antibacterial immunity in aged mice. Thus we demonstrate that monocytes are both influenced by and contributors to age-associated inflammation and that chronic exposure to age-associated inflammation increases susceptibility to S. pneumoniae due to altering monocyte maturity and function.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflamm-aging. An evolutionary perspective on immunosenescence.

            In this paper we extend the "network theory of aging," and we argue that a global reduction in the capacity to cope with a variety of stressors and a concomitant progressive increase in proinflammatory status are major characteristics of the aging process. This phenomenon, which we will refer to as "inflamm-aging," is provoked by a continuous antigenic load and stress. On the basis of evolutionary studies, we also argue that the immune and the stress responses are equivalent and that antigens are nothing other than particular types of stressors. We also propose to return macrophage to its rightful place as central actor not only in the inflammatory response and immunity, but also in the stress response. The rate of reaching the threshold of proinflammatory status over which diseases/disabilities ensue and the individual capacity to cope with and adapt to stressors are assumed to be complex traits with a genetic component. Finally, we argue that the persistence of inflammatory stimuli over time represents the biologic background (first hit) favoring the susceptibility to age-related diseases/disabilities. A second hit (absence of robust gene variants and/or presence of frail gene variants) is likely necessary to develop overt organ-specific age-related diseases having an inflammatory pathogenesis, such as atherosclerosis, Alzheimer's disease, osteoporosis, and diabetes. Following this perspective, several paradoxes of healthy centenarians (increase of plasma levels of inflammatory cytokines, acute phase proteins, and coagulation factors) are illustrated and explained. In conclusion, the beneficial effects of inflammation devoted to the neutralization of dangerous/harmful agents early in life and in adulthood become detrimental late in life in a period largely not foreseen by evolution, according to the antagonistic pleiotropy theory of aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocyte-mediated defense against microbial pathogens.

              Circulating blood monocytes supply peripheral tissues with macrophage and dendritic cell (DC) precursors and, in the setting of infection, also contribute directly to immune defense against microbial pathogens. In humans and mice, monocytes are divided into two major subsets that either specifically traffic into inflamed tissues or, in the absence of overt inflammation, constitutively maintain tissue macrophage/DC populations. Inflammatory monocytes respond rapidly to microbial stimuli by secreting cytokines and antimicrobial factors, express the CCR2 chemokine receptor, and traffic to sites of microbial infection in response to monocyte chemoattractant protein (MCP)-1 (CCL2) secretion. In murine models, CCR2-mediated monocyte recruitment is essential for defense against Listeria monocytogenes, Mycobacterium tuberculosis, Toxoplasma gondii, and Cryptococcus neoformans infection, implicating inflammatory monocytes in defense against bacterial, protozoal, and fungal pathogens. Recent studies indicate that inflammatory monocyte recruitment to sites of infection is complex, involving CCR2-mediated emigration of monocytes from the bone marrow into the bloodstream, followed by trafficking into infected tissues. The in vivo mechanisms that promote chemokine secretion, monocyte differentiation and trafficking, and finally monocyte-mediated microbial killing remain active and important areas of investigation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                14 January 2016
                January 2016
                : 12
                : 1
                : e1005368
                Affiliations
                [1 ]Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
                [2 ]McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
                [3 ]Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
                [4 ]Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
                [5 ]Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
                [6 ]Department of Medicine, McMaster University, Hamilton, Canada
                University of Toronto, CANADA
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DMEB LK AP AN CPV. Performed the experiments: AP AN CPV DL TSM NT PsN. Analyzed the data: AP AN CPV LK PsN DMEB. Contributed reagents/materials/analysis tools: MJL ZX ML MJ. Wrote the paper: AP AN DMEB.

                Article
                PPATHOGENS-D-15-01354
                10.1371/journal.ppat.1005368
                4713203
                26766566
                1e772bcb-096e-4ca7-8715-2dcc98b09b00
                © 2016 Puchta et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 10 June 2015
                : 6 December 2015
                Page count
                Figures: 8, Tables: 0, Pages: 23
                Funding
                This study was supported by research funding from a CIHR Operating Grant, a CIHR Catalyst grant ( http://www.cihr-irsc.gc.ca/e/193.html) and a Pfizer-ASPIRE award ( https://www.aspireresearch.org/) to DMEB. CPV was funded by both a M.G. DeGroote and Canadian Thoracic Society post-doctoral fellowships. AP was funded by an Ontario Graduate Scholarship. AN was supported by a Canada Graduate Scholarship from the CIHR. DMEB is supported by a Canada Research Chair in Aging and Immunity and the Pfizer-ASPIRE award to DMEB. DL and NT are supported by an Early Researcher Award to DMEB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article