18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuron-Derived Estrogen Is Critical for Astrocyte Activation and Neuroprotection of the Ischemic Brain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          17β-Estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but the functions of neuron-derived E2 in the ischemic brain are unclear. Here, we used a forebrain neuron-specific aromatase KO (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain and determine its roles after global cerebral ischemia. We demonstrated that ovariectomized female FBN-ARO-KO mice exhibited significantly attenuated astrocyte activation, astrocytic aromatization, and decreased hippocampal E2 levels compared with FLOX mice. Furthermore, FBN-ARO-KO mice had exacerbated neuronal damage and worse cognitive dysfunction after global cerebral ischemia. Similar results were observed in intact male mice. RNA-seq analysis revealed alterations in pathways and genes associated with astrocyte activation, neuroinflammation, and oxidative stress in FBN-ARO-KO mice. The compromised astrocyte activation in FBN-ARO-KO mice was associated with robust downregulation of the astrocyte-derived neurotrophic factors, BDNF and IGF-1, as well as the astrocytic glutamate transporter, GLT-1. Νeuronal FGF2, which acts in a paracrine manner to suppress astrocyte activation, was increased in FBN-ARO-KO neurons. Interestingly, blocking FGF2 signaling by central injection of FGFR3-neutralizing antibody was able to reverse the diminishment in neuroprotective astrocyte reactivity, and attenuate neuronal damage in FBN-ARO-KO mice. Moreover, in vivo E2 replacement suppressed FGF2 signaling and rescued the compromised reactive astrogliosis and cognitive deficits. Collectively, our data provide novel genetic evidence for a beneficial role of neuron-derived E2 in astrocyte activation, neuroprotection, and cognitive preservation following ischemic injury to the brain.

          SIGNIFICANCE STATEMENT Following cerebral ischemia, astrocytes become highly reactive and can exert neuroprotection through the release of neurotrophic factors and clearance of neurotoxic glutamate. The current study advances our understanding of this process by demonstrating that neuron-derived 17β-estradiol (E2) is neuroprotective and critical for induction of reactive astrocytes and their ability to produce astrocyte-derived neurotrophic factors, BDNF and IGF-1, and the glutamate transporter, GLT-1 after ischemic brain damage. These beneficial effects of neuron-derived E2 appear to be due, at least in part, to suppression of neuronal FGF2 signaling, which is a known suppressor of astrocyte activation. These findings suggest that neuron-derived E2 is neuroprotective after ischemic brain injury via a mechanism that involves suppression of neuronal FGF2 signaling, thereby facilitating astrocyte activation.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system.

          Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protective role of reactive astrocytes in brain ischemia.

            Reactive astrocytes are thought to protect the penumbra during brain ischemia, but direct evidence has been lacking due to the absence of suitable experimental models. Previously, we generated mice deficient in two intermediate filament (IF) proteins, glial fibrillary acidic protein (GFAP) and vimentin, whose upregulation is the hallmark of reactive astrocytes. GFAP(-/-)Vim(-/-) mice exhibit attenuated posttraumatic reactive gliosis, improved integration of neural grafts, and posttraumatic regeneration. Seven days after middle cerebral artery (MCA) transection, infarct volume was 210 to 350% higher in GFAP(-/-)Vim(-/-) than in wild-type (WT) mice; GFAP(-/-), Vim(-/-) and WT mice had the same infarct volume. Endothelin B receptor (ET(B)R) immunoreactivity was strong on cultured astrocytes and reactive astrocytes around infarct in WT mice but undetectable in GFAP(-/-)Vim(-/-) astrocytes. In WT astrocytes, ET(B)R colocalized extensively with bundles of IFs. GFAP(-/-)Vim(-/-) astrocytes showed attenuated endothelin-3-induced blockage of gap junctions. Total and glutamate transporter-1 (GLT-1)-mediated glutamate transport was lower in GFAP(-/-)Vim(-/-) than in WT mice. DNA array analysis and quantitative real-time PCR showed downregulation of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of tissue plasminogen activator. Thus, reactive astrocytes have a protective role in brain ischemia, and the absence of astrocyte IFs is linked to changes in glutamate transport, ET(B)R-mediated control of gap junctions, and PAI-1 expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neuroprotective actions of oestradiol and oestrogen receptors.

              Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17β-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline.
                Bookmark

                Author and article information

                Journal
                J Neurosci
                J Neurosci
                jneuro
                jneurosci
                J. Neurosci
                The Journal of Neuroscience
                Society for Neuroscience
                0270-6474
                1529-2401
                16 September 2020
                16 September 2020
                : 40
                : 38
                : 7355-7374
                Affiliations
                [1] 1Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
                [2] 2Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, Texas 78229
                Author notes
                Correspondence should be addressed to Darrell W. Brann at dbrann@ 123456augusta.edu or Ratna K. Vadlamudi at vadlamudi@ 123456uthscsa.edu

                Author contributions: Y.L., G.R.S., J.W., R.K.V., and D.W.B. designed research; Y.L., G.R.S., J.W., F.-L.T., and U.P.P. performed research; Y.L., G.R.S., J.W., Q.Z., F.-L.T., U.P.P., R.K.V., and D.W.B. analyzed data; Y.L. wrote the first draft of the paper; Y.L., G.R.S., J.W., Q.Z., U.P.P., R.R.T., R.K.V., and D.W.B. edited the paper; Q.Z., R.R.T., and D.W.B. contributed unpublished reagents/analytic tools; D.W.B. wrote the paper.

                Author information
                https://orcid.org/0000-0001-6499-7952
                https://orcid.org/0000-0003-2849-4076
                https://orcid.org/0000-0002-4480-8859
                Article
                JN-RM-0115-20
                10.1523/JNEUROSCI.0115-20.2020
                7534920
                32817249
                1e78eff8-0488-4359-b86f-79859e230440
                Copyright © 2020 Lu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 15 January 2020
                : 9 July 2020
                : 15 July 2020
                Funding
                Funded by: http://doi.org/10.13039/100000065HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
                Award ID: R01 NS088058
                Categories
                Research Articles
                Neurobiology of Disease
                Custom metadata
                true
                cellular

                17β-estradiol,aromatase,astrocyte,cerebral ischemia,neuroprotection,stroke

                Comments

                Comment on this article