28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NPHS2 variation in focal and segmental glomerulosclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Focal and segmental glomerulosclerosis (FSGS) is the most common histologic pattern of renal injury seen in adults with idiopathic proteinuria. Homozygous or compound heterozygous mutations in the podocin gene NPHS2 are found in 10–30% of pediatric cases of steroid resistant nephrosis and/or FSGS.

          Methods

          We studied the spectrum of genetic variation in 371 individuals with predominantly late onset FSGS (mean age of onset 25 years) by analysis of DNA samples.

          Results

          We identified 15 non-synonymous alleles that changed the amino acid sequence in 63 of the subjects screened (17%). Eight of these (p.R138Q, p.V180M, p.R229Q, p.E237Q, p.A242V, p.A284V, p.L327F and the frameshift 855–856 delAA) are alleles previously reported to cause FSGS in either the homozygous or compound heterozygous states, while the remaining 7 (p.R10T, p.V127W, p.Q215X, p.T232I, p.L270F, p.L312V and the frameshift 397delA) are novel alleles that have not been demonstrated previously. Twelve individuals of the 371 (3.2%) screened had two likely disease-causing NPHS2 alleles, present in either a homozygous or compound heterozygous state. We genotyped the two most common of the non-synonymous NPHS2 alleles (p.A242V and p.R229Q) identified by resequencing in participants from the Nurses' Health Study and also genotyped p.R229Q in 3 diabetic cohorts. We found that the presence of either of these variants does not significantly alter the risk of albuminuria in the Nurses' Health participants, nor does p.R229Q associate with "diabetic nephropathy".

          Conclusion

          NPHS2 mutations are a rare cause of FSGS in adults. The most common non-synonymous NPHS2 variants, p.R229Q and p.A242V, do not appear to alter the risk of proteinuria in the general population nor does p.R229Q associate with measures of kidney dysfunction in diabetic individuals. Our results help clarify the frequency of FSGS-causing NPHS2 mutations in adults and broaden our understanding of the spectrum of NPHS2 mutations that lead to human disease.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome.

          Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis.

            Focal and segmental glomerulosclerosis (FSGS) is a common, non-specific renal lesion. Although it is often secondary to other disorders, including HIV infection, obesity, hypertension and diabetes, FSGS also appears as an isolated, idiopathic condition. FSGS is characterized by increased urinary protein excretion and decreasing kidney function. Often, renal insufficiency in affected patients progresses to end-stage renal failure, a highly morbid state requiring either dialysis therapy or kidney transplantation. Here we present evidence implicating mutations in the gene encoding alpha-actinin-4 (ACTN4; ref. 2), an actin-filament crosslinking protein, as the cause of disease in three families with an autosomal dominant form of FSGS. In vitro, mutant alpha-actinin-4 binds filamentous actin (F-actin) more strongly than does wild-type alpha-actinin-4. Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients. Our results have implications for understanding the role of the cytoskeleton in the pathophysiology of kidney disease and may lead to a better understanding of the genetic basis of susceptibility to kidney damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function.

              Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive kidney failure and focal segmental glomerulosclerosis. Here, we show that the canonical transient receptor potential 6 (TRPC6) ion channel is expressed in podocytes and is a component of the glomerular slit diaphragm. We identified five families with autosomal dominant focal segmental glomerulosclerosis in which disease segregated with mutations in the gene TRPC6 on chromosome 11q. Two of the TRPC6 mutants had increased current amplitudes. These data show that TRPC6 channel activity at the slit diaphragm is essential for proper regulation of podocyte structure and function.
                Bookmark

                Author and article information

                Journal
                BMC Nephrol
                BMC Nephrology
                BioMed Central
                1471-2369
                2008
                29 September 2008
                : 9
                : 13
                Affiliations
                [1 ]Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
                [2 ]Glomerular Disease Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
                [3 ]Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University Of North Carolina, Chapel Hill, North Carolina, USA
                [4 ]Department of Pediatrics, University of Alabama, Birmingham, Alabama, USA
                [5 ]Department of Pediatrics, Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
                [6 ]Endocrine Centre and Department of Medicine, Heidelberg Repatriation Hospital, Victoria, Australia
                [7 ]Department of Medicine, The Northern Hospital, Epping, Victoria, Australia
                [8 ]Johan A. Moran Eye Center and Department of Ophthalmology & Visual Science, University of Utah, Salt Lake City, USA
                [9 ]Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
                Article
                1471-2369-9-13
                10.1186/1471-2369-9-13
                2569023
                18823551
                1e819dac-9cd5-4fcc-a83e-3dd44b7a7e60
                Copyright © 2008 Tonna et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 April 2008
                : 29 September 2008
                Categories
                Research Article

                Nephrology
                Nephrology

                Comments

                Comment on this article