4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study on the Anticancer Activity of Prodigiosin from Variants of Serratia Marcescens QBN VTCC 910026

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prodigiosin (Pg), a secondary metabolism produced by numerous bacterial species, is known as anticancer, antibacterial, antifungal, immunosuppressant, antioxidant, antimalarial properties. Pg has been tested for antitumor activity in many different cancer cell lines but studies in LU-1, KB cell lines, and tumor-bearing mice are still limited. In this study, Serratia marcescens QBN VTCC 910026 strain (GenBank: KX674054.1) was mutated using Ethyl Methanesulfonate (EMS) to increase the production of Pg. One strain known as EMS 5 was capable of increasing prodigiosin biosynthetic yield by 52% when compared to the wild-type strain. Red bacterial pigmented colonies containing Pg were collected from solid media, lysed with acetone, purified with toluene: ethyl acetate at a ratio of 9: 1 (v/v), and then used to evaluate the potential anticancer activity. The purity of Pg was confirmed using a high-performance liquid chromatography (HPLC) method which indicated a 98% rate. Pg chemical formula which was determined using 1H-NMR and 13C-NMR spectroscopy, confirmed as prodigiosin (Pg). Human breast cancer cell lines MCF-7, oropharyngeal cancer KB, and particularly lung cancer LU-1 in vitro were used to test the anticancer activity of purified Pg compound. It showed a strong inhibitory ability in all the cancer cell lines. Furthermore, the isolated Pg had capable of inhibiting tumor growth, the tumor volume decreased by 36.82%, after 28 days. The results indicated that the bacterial prodigiosin from variants Serratia marcescens QBN VTCC 910026 strain is an encouraging fragment suitable for therapeutic applications.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells.

          Prodigiosin, a natural red pigment produced by numerous bacterial species, has exhibited promising anticancer activity; however, the molecular mechanisms of action of prodigiosin on malignant cells remain unclear. Aberrant activation of the Wnt/β-catenin signaling cascade is associated with numerous human cancers. In this study, we identified prodigiosin as a potent inhibitor of the Wnt/β-catenin pathway. Prodigiosin blocked Wnt/β-catenin signaling by targeting multiple sites of this pathway, including the low-density lipoprotein-receptor-related protein (LRP) 6, Dishevelled (DVL), and glycogen synthase kinase-3β (GSK3β). In breast cancer MDA-MB-231 and MDA-MB-468 cells, nanomolar concentrations of prodigiosin decreased phosphorylation of LRP6, DVL2, and GSK3β and suppressed β-catenin-stimulated Wnt target gene expression, including expression of cyclin D1. In MDA-MB-231 breast cancer xenografts and MMTV-Wnt1 transgenic mice, administration of prodigiosin slowed tumor progression and reduced the expression of phosphorylated LRP6, phosphorylated and unphosphorylated DVL2, Ser9 phosphorylated GSK3β, active β-catenin, and cyclin D1. Through its ability to inhibit Wnt/β-catenin signaling and reduce cyclin D1 levels, prodigiosin could have therapeutic activity in advanced breast cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions.

            We describe the construction of six strains of Escherichia coli with different mutations at the same coding position in the lacZ gene, which specifies the active site glutamic acid residue at position 461 in beta'-galactosidase. Each strain is Lac- and reverts to Lac+ only by restoring the glutamic acid codon. The strains have been designed so that each reverts via one of the six base substitutions. The set of strains allows detection of each transition and transversion simply by monitoring the Lac- to Lac+ frequency, as demonstrated here with characterized mutagens and mutator alleles. These strains are useful for rapidly determining the mutagenic specificity of mutagens at a single site, for detecting low levels of stimulation of certain base substitutions, for monitoring specific base changes in response to various experimental conditions or strain backgrounds, and for isolating new mutator strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biosynthesis and regulation of bacterial prodiginines.

              The red-pigmented prodiginines are bioactive secondary metabolites produced by both Gram-negative and Gram-positive bacteria. Recently, these tripyrrole molecules have received renewed attention owing to reported immunosuppressive and anticancer properties. The enzymes involved in the biosynthetic pathways for the production of two of these molecules, prodigiosin and undecylprodigiosin, are now known. However, the biochemistry of some of the reactions is still poorly understood. The physiology and regulation of prodiginine production in Serratia and Streptomyces are now well understood, although the biological role of these pigments in the producer organisms remains unclear. However, research into the biology of pigment production will stimulate interest in the bioengineering of strains to synthesize useful prodiginine derivatives.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2022
                25 April 2022
                : 2022
                : 4053074
                Affiliations
                1Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Caugiay District 10600 Hanoi, Vietnam
                2Thai Nguyen University, Vietnam
                3Thuyloi University, Vietnam
                Author notes

                Academic Editor: Antonio Palumbo Jr

                Author information
                https://orcid.org/0000-0002-5242-8178
                https://orcid.org/0000-0001-5591-8044
                Article
                10.1155/2022/4053074
                9061010
                35509712
                1e834b60-523a-49cc-b8b1-ee2ac80e8217
                Copyright © 2022 Sy Le Thanh Nguyen et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 November 2021
                : 8 February 2022
                : 12 March 2022
                Funding
                Funded by: Vietnam National Foundation for Science and Technology Development
                Award ID: 106.02-2018.332
                Categories
                Research Article

                Comments

                Comment on this article