3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leveraging Motor Imagery Rehabilitation for Individuals with Disabilities: A Review

      , , ,
      Healthcare
      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motor imagery, an intricate cognitive procedure encompassing the mental simulation of motor actions, has surfaced as a potent strategy within the neuro-rehabilitation domain. It presents a non-invasive, economically viable method for facilitating individuals with disabilities in enhancing their motor functionality and regaining self-sufficiency. This manuscript delivers an exhaustive analysis of the significance of motor imagery in augmenting functional rehabilitation for individuals afflicted with physical impairments. It investigates the fundamental mechanisms governing motor imagery, its applications across diverse disability conditions, and the prospective advantages it renders. Moreover, this document addresses the prevailing obstacles and prospective trajectories in this sector, accentuating the necessity for continued investigation and the invention of cutting-edge technologies that optimize the potentiality of motor imagery in aiding disabled persons.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The neural network of motor imagery: an ALE meta-analysis.

          Motor imagery (MI) or the mental simulation of action is now increasingly being studied using neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. The booming interest in capturing the neural underpinning of MI has provided a large amount of data which until now have never been quantitatively summarized. The aim of this activation likelihood estimation (ALE) meta-analysis was to provide a map of the brain structures involved in MI. Combining the data from 75 papers revealed that MI consistently recruits a large fronto-parietal network in addition to subcortical and cerebellar regions. Although the primary motor cortex was not shown to be consistently activated, the MI network includes several regions which are known to play a role during actual motor execution. The body part involved in the movements, the modality of MI and the nature of the MI tasks used all seem to influence the consistency of activation within the general MI network. In addition to providing the first quantitative cortical map of MI, we highlight methodological issues that should be addressed in future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural simulation of action: a unifying mechanism for motor cognition.

            Paradigms drawn from cognitive psychology have provided new insight into covert stages of action. These states include not only intending actions that will eventually be executed, but also imagining actions, recognizing tools, learning by observation, or even understanding the behavior of other people. Studies using techniques for mapping brain activity, probing cortical excitability, or measuring the activity of peripheral effectors in normal human subjects and in patients all provide evidence of a subliminal activation of the motor system during these cognitive states. The hypothesis that the motor system is part of a simulation network that is activated under a variety of conditions in relation to action, either self-intended or observed from other individuals, will be developed. The function of this process of simulation would be not only to shape the motor system in anticipation to execution, but also to provide the self with information on the feasibility and the meaning of potential actions. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motor imagery: a backdoor to the motor system after stroke?

              Understanding brain plasticity after stroke is important in developing rehabilitation strategies. Active movement therapies show considerable promise but depend on motor performance, excluding many otherwise eligible patients. Motor imagery is widely used in sport to improve performance, which raises the possibility of applying it both as a rehabilitation method and to access the motor network independently of recovery. Specifically, whether the primary motor cortex (M1), considered a prime target of poststroke rehabilitation, is involved in motor imagery is unresolved. We review methodological considerations when applying motor imagery to healthy subjects and in patients with stroke, which may disrupt the motor imagery network. We then review firstly the motor imagery training literature focusing on upper-limb recovery, and secondly the functional imaging literature in healthy subjects and in patients with stroke. The review highlights the difficulty in addressing cognitive screening and compliance in motor imagery studies, particularly with regards to patients with stroke. Despite this, the literature suggests the encouraging effect of motor imagery training on motor recovery after stroke. Based on the available literature in healthy volunteers, robust activation of the nonprimary motor structures, but only weak and inconsistent activation of M1, occurs during motor imagery. In patients with stroke, the cortical activation patterns are essentially unexplored as is the underlying mechanism of motor imagery training. Provided appropriate methodology is implemented, motor imagery may provide a valuable tool to access the motor network and improve outcome after stroke.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Healthcare
                Healthcare
                MDPI AG
                2227-9032
                October 2023
                September 29 2023
                : 11
                : 19
                : 2653
                Article
                10.3390/healthcare11192653
                1eb079f5-a1aa-4dec-af49-a38a09906305
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article