2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes, as the main group of extracellular vesicles, are biologically active lipid-bilayer vesicles that are naturally released from different types of normal or tumor cells. These vesicles play an important role in intercellular communication and influence the extracellular environment and the immune system. Emerging evidence demonstrates that cancer-derived exosomes are enriched in immunosuppressive proteins, such as the programmed death-ligand 1 (PD-L1). PD-L1 and its receptor programmed cell death protein 1 (PD-1) are the key immune checkpoint molecules that promote tumor progression via negative regulation of immune responses. PDL-1 is highly expressed on the surface of tumor cells and binds to PD-1 on the surface of activated T cells, leading to suppression of T cells, which consequently enables cancer cells to escape antitumor immunity. Currently, there are several Food and Drug Administration-approved monoclonal antibodies blocking PD-1/PD-L1 interaction, which are clinically used for cancer treatment. However, despite impressive treatment outcomes, some patients show poor response to PD-1/PD-L1 blockade. Of note, tumor-derived exosomes containing PD-L1 can recapitulate the effect of cell-surface PD-L1. There is evidence that reveals a significant association between levels of circulating exosomal PD-L1 and rate of response to anti-PD-1/PD-L1 antibody therapy. The present article reviews the role of exosomal PDL-1 in the therapeutic resistance to anti-PD-1/PD-L1 treatment. Importantly, it is suggested that the removal of exosomal PDL-1 could serve as a therapeutic adjuvant for enhancing the efficacy of anti-PD-1/PD-L1 therapy in patients with cancer.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer

          Pembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non-small-cell lung cancer (NSCLC), with increased activity in tumors that express programmed death ligand 1 (PD-L1).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.

            Somatic mutations have the potential to encode "non-self" immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.

              Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy. Copyright © 2015, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2021
                20 January 2021
                : 9
                : 1
                : e001698
                Affiliations
                [1 ]departmentDepartment of General Surgery, Guangdong Provincial People’s Hospital , Guangdong Academy of Medical Science , Guangzhou, China
                [2 ]departmentDepartment of Obstetrics and Gynecology , Sun Yat Sen Memorial Hospital, Sun Yat sen University , Guangzhou, China
                [3 ]departmentDepartment of Medical Genetics , School of Medicine, Bam University of Medical Sciences , Bam, Iran
                [4 ]departmentDepartment of Medical Biotechnology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad, Iran
                Author notes
                [Correspondence to ] Dr Zi Yin; yinzi@ 123456gdph.org.cn ; Dr Sheng Chen; chenshenglucky@ 123456yeah.net
                Author information
                http://orcid.org/0000-0002-4376-1083
                Article
                jitc-2020-001698
                10.1136/jitc-2020-001698
                7818841
                33472857
                1ec083e4-ac69-4b56-bf19-ade206562dc3
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 16 December 2020
                Funding
                Funded by: Science and Technology Program of Guangzhou;
                Award ID: 201904010043
                Funded by: National Natural Science Foundation of China;
                Award ID: 81802892, 82072637
                Funded by: Medical Scientific Research Foundation of Guangdong;
                Award ID: A2019453
                Categories
                Review
                1506
                2521
                Custom metadata
                unlocked

                programmed cell death 1 receptor,immunotherapy,tumor escape

                Comments

                Comment on this article