4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5′-diphosphate-β-S and pre-treatment with Ca 2+-free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate (IP 3), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the IP 3 receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, IP 3-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular Ca 2+ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor for motilin identified in the human gastrointestinal system.

          Motilin is a 22-amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract of humans and other species. It affects gastric motility by stimulating interdigestive antrum and duodenal contractions. A heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptor for motilin was isolated from human stomach, and its amino acid sequence was found to be 52 percent identical to the human receptor for growth hormone secretagogues. The macrolide antibiotic erythromycin also interacted with the cloned motilin receptor, providing a molecular basis for its effects on the human GI tract. The motilin receptor is expressed in enteric neurons of the human duodenum and colon. Development of motilin receptor agonists and antagonists may be useful in the treatment of multiple disorders of GI motility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats.

            Ghrelin is a newly discovered orexigenic peptide originating from the stomach. However, its action in regulating the fed and fasted motor activity of the digestive tract is not fully understood. In the present study, we examined the effects of intracerebroventricular (I.C.V.) and intravenous (I.V.) injection of ghrelin on the physiological fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats. I.C.V. and I.V. injection of ghrelin induced fasted motor activity in the duodenum in normal fed rats, while I.V. injection of ghrelin induced fasted motor activity in both the stomach and duodenum in vagotomized rats. The effects of I.C.V. and I.V. injected ghrelin were blocked by growth hormone secretagogue receptor (GHS-R) antagonist given by the same route and also blocked by immunoneutralization of neuropeptide Y (NPY) in the brain. The effects of I.V. injected ghrelin were not altered by I.C.V. injection of GHS-R antagonist in vagotomized rats. Injection of GHS-R antagonist blocked the fasted motor activity in both the stomach and duodenum in vagotomized rats but did not affect the fasted motor activity in normal rats. Low intragastric pH inhibited the effect of ghrelin. The present results indicate that ghrelin is involved in regulation of fasted motor activity in the stomach and duodenum. Peripheral ghrelin may induce the fasted motor activity by activating the NPY neurons in the brain, probably through ghrelin receptors on vagal afferent neurons. Once the brain mechanism is eliminated by truncal vagotomy, ghrelin might be primarily involved in the regulation of fasted motor activity through ghrelin receptors on the stomach and duodenum. The action of ghrelin to induce fasted motor activity is strongly affected by intragastric pH; low pH inhibits the action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ghrelin and motilin receptors as drug targets for gastrointestinal disorders.

              The gastrointestinal tract is the major source of the related hormones ghrelin and motilin, which act on structurally similar G protein-coupled receptors. Nevertheless, selective receptor agonists are available. The primary roles of endogenous ghrelin and motilin in the digestive system are to increase appetite or hedonic eating (ghrelin) and initiate phase III of gastric migrating myoelectric complexes (motilin). Ghrelin and motilin also both inhibit nausea. In clinical trials, the motilin receptor agonist camicinal increased gastric emptying, but at lower doses reduced gastroparesis symptoms and improved appetite. Ghrelin receptor agonists have been trialled for the treatment of diabetic gastroparesis because of their ability to increase gastric emptying, but with mixed results; however, relamorelin, a ghrelin agonist, reduced nausea and vomiting in patients with this disorder. Treatment of postoperative ileus with a ghrelin receptor agonist proved unsuccessful. Centrally penetrant ghrelin receptor agonists stimulate defecation in animals and humans, although ghrelin itself does not seem to control colorectal function. Thus, the most promising uses of motilin receptor agonists are the treatment of gastroparesis or conditions with slow gastric emptying, and ghrelin receptor agonists hold potential for the reduction of nausea and vomiting, and the treatment of constipation. Therapeutic, gastrointestinal roles for receptor antagonists or inverse agonists have not been identified.
                Bookmark

                Author and article information

                Journal
                Mol Cells
                Mol. Cells
                ksmcb
                Molecules and Cells
                Korean Society for Molecular and Cellular Biology
                1016-8478
                0219-1032
                June 2019
                14 June 2019
                14 June 2019
                : 42
                : 6
                : 470-479
                Affiliations
                [1 ]Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Korea
                [2 ]Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Korea
                Author notes
                [* ]Correspondence: vision@ 123456pusan.ac.kr
                Author information
                https://orcid.org/0000-0001-8835-9103
                Article
                molce-42-470
                10.14348/molcells.2019.0028
                6602145
                31250620
                1ed706ee-9ed4-44dc-8320-ada5428f0783
                © The Korean Society for Molecular and Cellular Biology. All rights reserved.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

                History
                : 22 February 2019
                : 26 April 2019
                : 07 May 2019
                Categories
                Articles

                gastrointestinal motility,ghrelin,interstitial cells of cajal,motilin,pacemaker potentials

                Comments

                Comment on this article