0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aryl-fluoride reductive elimination from Pd(II): feasibility assessment from theory and experiment.

      Journal of the American Chemical Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DFT methods were used to elucidate features of coordination environment of Pd(II) that could enable Ar-F reductive elimination as an elementary C-F bond-forming reaction potentially amenable to integration into catalytic cycles for synthesis of organofluorine compounds with benign stoichiometric sources of F(-). Three-coordinate T-shaped geometry of Pd(II)Ar(F)L (L = NHC, PR(3)) was shown to offer kinetics and thermodynamics of Ar-F elimination largely compatible with synthetic applications, whereas coordination of strong fourth ligands to Pd or association of hydrogen bond donors with F each caused pronounced stabilization of Pd(II) reactant and increased activation barrier beyond the practical range. Decreasing donor ability of L promotes elimination kinetics via increasing driving force and para-substituents on Ar exert a sizable SNAr-type TS effect. Synthesis and characterization of the novel [Pd(C(6)H(4)-4-NO(2))ArL(mu-F)](2) (L = P(o-Tolyl)(3), 17; P(t-Bu)(3), 18) revealed stability of the fluoride-bridged dimer forms of the requisite Pd(II)Ar(F)L as the key remaining obstacle to Ar-F reductive elimination in practice. Interligand steric repulsion with P(t-Bu)(3) served to destabilize dimer 18 by 20 kcal/mol, estimated with DFT relative to PMe(3) analog, yet was insufficient to enable formation of greater than trace quantities of Ar-F; C-H activation of P(t-Bu)(3) followed by isobutylene elimination was the major degradation pathway of 18 while Ar/F- scrambling and Ar-Ar reductive elimination dominated thermal decomposition of 17. However, use of Buchwald's L = P(C(6)H(4)-2-Trip)(t-Bu)(2) provided the additional steric pressure on the [PdArL(mu-F)](2) core needed to enable formation of aryl-fluoride net reductive elimination product in quantifiable yields (10%) in reactions with both 17 and 18 at 60 degrees over 22 h.

          Related collections

          Author and article information

          Journal
          17263419
          10.1021/ja066930l

          Comments

          Comment on this article

          scite_