10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Scaling laws for jets of single cavitation bubbles

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fast liquid jets, called micro-jets, are produced within cavitation bubbles experiencing an aspherical collapse. Here we review micro-jets of different origins, scales and appearances, and propose a unified framework to describe their dynamics by using an anisotropy parameter $\unicode[STIX]{x1D701}\geqslant 0$ , representing a dimensionless measure of the liquid momentum at the collapse point (Kelvin impulse). This parameter is rigorously defined for various jet drivers, including gravity and nearby boundaries. Combining theoretical considerations with hundreds of high-speed visualisations of bubbles collapsing near a rigid surface, near a free surface or in variable gravity, we classify the jets into three distinct regimes: weak, intermediate and strong. Weak jets ( $\unicode[STIX]{x1D701}<10^{-3}$ ) hardly pierce the bubble, but remain within it throughout the collapse and rebound. Intermediate jets ( $10^{-3}<\unicode[STIX]{x1D701}<0.1$ ) pierce the opposite bubble wall close to the last collapse phase and clearly emerge during the rebound. Strong jets ( $\unicode[STIX]{x1D701}>0.1$ ) pierce the bubble early during the collapse. The dynamics of the jets is analysed through key observables, such as the jet impact time, jet speed, bubble displacement, bubble volume at jet impact and vapour-jet volume. We find that, upon normalising these observables to dimensionless jet parameters, they all reduce to straightforward functions of $\unicode[STIX]{x1D701}$ , which we can reproduce numerically using potential flow theory. An interesting consequence of this result is that a measurement of a single observable, such as the bubble displacement, suffices to estimate any other parameter, such as the jet speed. Remarkably, the dimensionless parameters of intermediate and weak jets ( $\unicode[STIX]{x1D701}<0.1$ ) depend only on $\unicode[STIX]{x1D701}$ , not on the jet driver (i.e. gravity or boundaries). In the same regime, the jet parameters are found to be well approximated by power laws of $\unicode[STIX]{x1D701}$ , which we explain through analytical arguments.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          VIII.On the pressure developed in a liquid during the collapse of a spherical cavity

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cavitation erosion by single laser-produced bubbles

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary

                Bookmark

                Author and article information

                Journal
                Journal of Fluid Mechanics
                J. Fluid Mech.
                Cambridge University Press (CUP)
                0022-1120
                1469-7645
                September 10 2016
                August 03 2016
                September 10 2016
                : 802
                : 263-293
                Article
                10.1017/jfm.2016.463
                1f2532cf-8468-4c47-bd60-728f793e72c4
                © 2016

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article