14
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Surveillance of Wastewater for Early Epidemic Prediction (SWEEP): Environmental and Health Security Perspectives in the post COVID-19 Anthropocene

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present work summarizes the major research findings related to wastewater-based epidemiology (WBE) study of COVID-19 and puts forward a conceptual framework, termed as “ Surveillance of Wastewater for Early Epidemic Prediction (SWEEP)” for implementation of WBE. SWEEP framework is likely to tackle few practical issues related to WBE and simultaneously proposes refinements to the approach for better outcome and efficiency to save precious lives around the globe. It is observed that the present pandemic offers an opportunity for SWEEP to get included in routine urban water management to put the humankind at front to stop such pandemic in future or at least be prepared to fight against it. With global collaboration, SWEEP can be fine-tuned to meet diverse needs, making the present and future generations resilient to future viral outbreaks. Recent WBE studies conducted to check for the presence of SARS-CoV-2 in wastewater revealed that raw sewage samples tested positive to PCR-based assays while the treated samples showed absence of viral titers. Moreover, the lockdown had a positive impact on decreasing the viral loading in sewage. The proposed SWEEP protocol has an advantage over testifying individuals for predicting the stage of pandemic.

          Graphical abstract

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found

          Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

          In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

            Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Detection of SARS-CoV-2 in Different Types of Clinical Specimens

              This study describes results of PCR and viral RNA testing for SARS-CoV-2 in bronchoalveolar fluid, sputum, feces, blood, and urine specimens from patients with COVID-19 infection in China to identify possible means of non-respiratory transmission.
                Bookmark

                Author and article information

                Journal
                Environ Res
                Environ Res
                Environmental Research
                Elsevier Inc.
                0013-9351
                1096-0953
                12 February 2021
                12 February 2021
                : 110831
                Affiliations
                [a ]Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
                [b ]Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 639798, Singapore
                [c ]School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
                [d ]Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat -382-355, India
                Author notes
                [] Corresponding author. Ramalingaswami Fellow (DBT, GoI), Department of Civil Engineering (CED), Indian Institute of Technology Roorkee (IITR), Roorkee-247667, Uttarakhand, INDIA, Office: +91 1332 284551 Mobile:+91-9068649528, ;
                [1]

                Joint first authorship.

                Article
                S0013-9351(21)00125-0 110831
                10.1016/j.envres.2021.110831
                7879813
                33587948
                1f5049d7-404b-418c-9e92-5313b545e484
                © 2021 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 30 December 2020
                : 28 January 2021
                : 29 January 2021
                Categories
                Article

                General environmental science
                covid-19,early warning system,sars-cov-2,surveillance of wastewater for early epidemic prediction (sweep),pcr-based assays

                Comments

                Comment on this article