24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sulfur availability regulates plant growth via glucose-TOR signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.

          Abstract

          Plants lack the amino acid sensors that regulate TOR in metazoans. Here Dong et al. show that Arabidopsis GCN2 senses carbon and nitrogen availability for cysteine synthesis while sulfur limitation activates TOR via glucose metabolism, providing a mechanism whereby plants control growth according to nutrient availability.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Plasticity of the Arabidopsis root system under nutrient deficiencies.

          Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glc-TOR signalling leads transcriptome reprogramming and meristem activation

            Meristems encompass stem/progenitor cells that sustain postembryonic growth of all plant organs. How meristems are activated and sustained by nutrient signalling remains enigmatic in photosynthetic plants. Combining chemical manipulations and chemical genetics at the photoautotrophic transition checkpoint, we reveal that shoot photosynthesis-derived glucose drives target-of-rapamycin (TOR) signalling relays through glycolysis and mitochondrial bioenergetics to control root meristem activation, which is decoupled from direct glucose sensing, growth-hormone signalling, and stem-cell maintenance. Surprisingly, glucose-TOR signalling dictates transcriptional reprogramming of remarkable gene sets involved in central and secondary metabolism, cell cycle, transcription, signalling, transport and folding. Systems, cellular and genetic analyses uncover TOR phosphorylation of E2Fa transcription factor for an unconventional activation of S-phase genes, and glucose-signalling defects in e2fa root meristems. Our findings establish pivotal roles of glucose-TOR signalling in unprecedented transcriptional networks wiring central metabolism and biosynthesis for energy and biomass production, and integrating localized stem/progenitor-cell proliferation through inter-organ nutrient coordination to control developmental transition and growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.

              Sulfur is required for growth of all organisms and is present in a wide variety of metabolites having distinctive biological functions. Sulfur is cycled in ecosystems in nature where conversion of sulfate to organic sulfur compounds is primarily dependent on sulfate uptake and reduction pathways in photosynthetic organisms and microorganisms. In vascular plant species, transport proteins and enzymes in this pathway are functionally diversified to have distinct biochemical properties in specific cellular and subcellular compartments. Recent findings indicate regulatory processes of sulfate transport and metabolism are tightly connected through several modes of transcriptional and posttranscriptional mechanisms. This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.
                Bookmark

                Author and article information

                Contributors
                +49-6221-546284 , ruediger.hell@cos.uni-heidelberg.de
                +49-6221-546284 , markus.wirtz@cos.uni-heidelberg.de
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                27 October 2017
                27 October 2017
                2017
                : 8
                : 1174
                Affiliations
                [1 ]ISNI 0000 0001 2190 4373, GRID grid.7700.0, Centre for Organismal Studies (COS), , University of Heidelberg, ; Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
                [2 ]ISNI 0000 0004 0370 1101, GRID grid.136304.3, Graduate School of Pharmaceutical Sciences, , Chiba University, ; Chiba, 260-8675 Japan
                [3 ]ISNI 0000 0001 0943 599X, GRID grid.5601.2, Center for Medical Research, , University of Mannheim, ; 68167 Mannheim, Germany
                [4 ]ISNI 0000 0004 0492 0584, GRID grid.7497.d, German Cancer Research Center (DKFZ), ; 69120 Heidelberg, Germany
                [5 ]ISNI 0000 0001 2192 5916, GRID grid.11136.34, Laboratory of Genomes and Plant Development, , Centre National de la Recherche Scientifique, University of Perpignan, ; 66100 Perpignan, France
                Author information
                http://orcid.org/0000-0001-7790-4022
                Article
                1224
                10.1038/s41467-017-01224-w
                5660089
                29079776
                1f623946-0243-4a74-85bc-96d1eb2890c9
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 January 2017
                : 30 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article