23
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gβγ-protein kinase C- and Gβγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1β up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gβ protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2 −/− mice. These results suggest that Gβγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.

          Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease.

            Both lipid-modifying therapy and antioxidant vitamins are thought to have benefit in patients with coronary disease. We studied simvastatin-niacin and antioxidant-vitamin therapy, alone and together, for cardiovascular protection in patients with coronary disease and low plasma levels of HDL. In a three-year, double-blind trial, 160 patients with coronary disease, low HDL cholesterol levels and normal LDL cholesterol levels were randomly assigned to receive one of four regimens: simvastatin plus niacin, vitamins, simvastatin-niacin plus antioxidants; or placebos. The end points were arteriographic evidence of a change in coronary stenosis and the occurrence of a first cardiovascular event (death, myocardial infarction, stroke, or revascularization). The mean levels of LDL and HDL cholesterol were unaltered in the antioxidant group and the placebo group; these levels changed substantially (by -42 percent and +26 percent, respectively) in the simvastatin-niacin group. The protective increase in HDL2 with simvastatin plus niacin was attenuated by concurrent therapy with antioxidants. The average stenosis progressed by 3.9 percent with placebos, 1.8 percent with antioxidants (P=0.16 for the comparison with the placebo group), and 0.7 percent with simvastatin-niacin plus antioxidants (P=0.004) and regressed by 0.4 percent with simvastatin-niacin alone (P<0.001). The frequency of the clinical end point was 24 percent with placebos; 3 percent with simvastatin-niacin alone; 21 percent in the antioxidant-therapy group; and 14 percent in the simvastatin-niacin-plus-antioxidants group. Simvastatin plus niacin provides marked clinical and angiographically measurable benefits in patients with coronary disease and low HDL levels. The use of antioxidant vitamins in this setting must be questioned.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling.

              G protein-coupled receptors (GPCRs) are seven transmembrane proteins that form the largest single family of integral membrane receptors. GPCRs transduce information provided by extracellular stimuli into intracellular second messengers via their coupling to heterotrimeric G proteins and the subsequent regulation of a diverse variety of effector systems. Agonist activation of GPCRs also initiates processes that are involved in the feedback desensitization of GPCR responsiveness, the internalization of GPCRs, and the coupling of GPCRs to heterotrimeric G protein-independent signal transduction pathways. GPCR desensitization occurs as a consequence of G protein uncoupling in response to phosphorylation by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). GRK-mediated receptor phosphorylation promotes the binding of beta-arrestins, which not only uncouple receptors from heterotrimeric G proteins but also target many GPCRs for internalization in clathrin-coated vesicles. beta-Arrestin-dependent endocytosis of GPCRs involves the direct interaction of the carboxyl-terminal tail domain of beta-arrestins with both beta-adaptin and clathrin. The focus of this review is the current and evolving understanding of the contribution of GRKs, beta-arrestins, and endocytosis to GPCR-specific patterns of desensitization and resensitization. In addition to their role as GPCR-specific endocytic adaptor proteins, beta-arrestins also serve as molecular scaffolds that foster the formation of alternative, heterotrimeric G protein-independent signal transduction complexes. Similar to what is observed for GPCR desensitization and resensitization, beta-arrestin-dependent GPCR internalization is involved in the intracellular compartmentalization of these protein complexes.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                10 February 2017
                2017
                : 7
                : 42279
                Affiliations
                [1 ]College of Life Sciences, Zhejiang University , Yu Hang Tang Load 388, Hangzhou, PR China
                [2 ]Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH , Frederick, MD 21702, USA
                [3 ]Xuzhou Yes Biotech Laboratories Ltd. Xuzhou, Jiangsu, PR China
                [4 ]Department of Spine Surgery, Daping Hospital, Third Military Medical University , Chongqing, PR China
                Author notes
                Article
                srep42279
                10.1038/srep42279
                5301212
                28186140
                1f749604-d639-4aa0-903c-fd79f1c9338b
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 August 2016
                : 08 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article