6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparison of Somatostatin Receptor 2-Targeting PET Tracers in the Detection of Mouse Atherosclerotic Plaques

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rupture-prone atherosclerotic plaques are characterized by accumulation of macrophages, which have shown to express somatostatin type 2 receptors. We aimed to investigate whether somatostatin receptor-targeting positron emission tomography (PET) tracers, [(68)Ga]DOTANOC, [(18)F]FDR-NOC, and [(68)Ga]DOTATATE, can detect inflamed atherosclerotic plaques.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Somatostatin and its receptor family.

          Y C Patel (1999)
          Somatostatin (SST), a regulatory peptide, is produced by neuroendocrine, inflammatory, and immune cells in response to ions, nutrients, neuropeptides, neurotransmitters, thyroid and steroid hormones, growth factors, and cytokines. The peptide is released in large amounts from storage pools of secretory cells, or in small amounts from activated immune and inflammatory cells, and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells that are widely distributed in the brain and periphery. These actions are mediated by a family of seven transmembrane (TM) domain G-protein-coupled receptors that comprise five distinct subtypes (termed SSTR1-5) that are endoded by separate genes segregated on different chromosomes. The five receptor subtypes bind the natural SST peptides, SST-14 and SST-28, with low nanomolar affinity. Short synthetic octapeptide and hexapeptide analogs bind well to only three of the subtypes, 2, 3, and 5. Selective nonpeptide agonists with nanomolar affinity have been developed for four of the subtypes (SSTR1, 2, 3, and 4) and putative peptide antagonists for SSTR2 and SSTR5 have been identified. The ligand binding domain for SST ligands is made up of residues in TMs III-VII with a potential contribution by the second extracellular loop. SSTRs are widely expressed in many tissues, frequently as multiple subtypes that coexist in the same cell. The five receptors share common signaling pathways such as the inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase (PTP), and modulation of mitogen-activated protein kinase (MAPK) through G-protein-dependent mechanisms. Some of the subtypes are also coupled to inward rectifying K(+) channels (SSTR2, 3, 4, 5), to voltage-dependent Ca(2+) channels (SSTR1, 2), a Na(+)/H(+) exchanger (SSTR1), AMPA/kainate glutamate channels (SSTR1, 2), phospholipase C (SSTR2, 5), and phospholipase A(2) (SSTR4). SSTRs block cell secretion by inhibiting intracellular cAMP and Ca(2+) and by a receptor-linked distal effect on exocytosis. Four of the receptors (SSTR1, 2, 4, and 5) induce cell cycle arrest via PTP-dependent modulation of MAPK, associated with induction of the retinoblastoma tumor suppressor protein and p21. In contrast, SSTR3 uniquely triggers PTP-dependent apoptosis accompanied by activation of p53 and the pro-apoptotic protein Bax. SSTR1, 2, 3, and 5 display acute desensitization of adenylyl cyclase coupling. Four of the subtypes (SSTR2, 3, 4, and 5) undergo rapid agonist-dependent endocytosis. SSTR1 fails to be internalized but is instead upregulated at the membrane in response to continued agonist exposure. Among the wide spectrum of SST effects, several biological responses have been identified that display absolute or relative subtype selectivity. These include GH secretion (SSTR2 and 5), insulin secretion (SSTR5), glucagon secretion (SSTR2), and immune responses (SSTR2). Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS).

            Leptin plays a role in fat metabolism and correlates with insulin resistance and other markers of the metabolic syndrome, independent of total adiposity. Therefore, we hypothesized that raised leptin levels may identify men at increased risk of a coronary event in the West of Scotland Coronary Prevention Study (WOSCOPS). Methods and Results- Plasma leptin levels were measured at baseline in 377 men (cases) who subsequently experienced a coronary event and in 783 men (controls) who remained free of an event during the 5-year follow-up period of the study. Controls were matched to cases on the basis of age and smoking history and were representative of the entire WOSCOPS cohort. Leptin levels were significantly higher in cases than controls (5.87+/-2.04 ng/mL versus 5.04+/-2.09 ng/mL, P<0.001). In univariate analysis, for each 1 SD increase in leptin, the relative risk (RR) of an event increased by 1.25 (95% confidence interval [CI], 1.10 to 1.43; P<0.001). There was minimal change in this RR with correction for body mass index (RR, 1.24; 95% CI, 1.06 to 1.45; P=0.006) or with further correction for classic risk factors, including age, lipids, and systolic blood pressure (RR, 1.20; 95% CI, 1.02 to 1.42; P=0.03). Leptin correlated with C-reactive protein (r=0.24, P<0.001) and, even with this variable added to the model, leptin retained significance as a predictor of coronary events (RR, 1.18; 95% CI, 1.00 to 1.39; P=0.05) at the expense of C-reactive protein. We show, for the first time, in a large prospective study that leptin is a novel, independent risk factor for coronary heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice.

              Transsignaling of interleukin (IL)-6 is a central pathway in the pathogenesis of disorders associated with chronic inflammation, such as Crohn disease, rheumatoid arthritis, and inflammatory colon cancer. Notably, IL-6 also represents an independent risk factor for coronary artery disease (CAD) in humans and is crucially involved in vascular inflammatory processes. In the present study, we showed that treatment with a fusion protein of the natural IL-6 transsignaling inhibitor soluble glycoprotein 130 (sgp130) and IgG1-Fc (sgp130Fc) dramatically reduced atherosclerosis in hypercholesterolemic Ldlr(-/-) mice without affecting weight gain and serum lipid levels. Moreover, sgp130Fc treatment even led to a significant regression of advanced atherosclerosis. Mechanistically, endothelial activation and intimal smooth muscle cell infiltration were decreased in sgp130Fc-treated mice, resulting in a marked reduction of monocyte recruitment and subsequent atherosclerotic plaque progression. Of note, patients with CAD exhibited significantly lower plasma levels of endogenous sgp130, suggesting that a compromised counterbalancing of IL-6 transsignaling may contribute to atherogenesis in humans. These data clarify, for the first time, the critical involvement of, in particular, the transsignaling of IL-6 in CAD and warrant further investigation of sgp130Fc as a novel therapeutic for the treatment of CAD and related diseases.
                Bookmark

                Author and article information

                Journal
                Molecular Imaging and Biology
                Mol Imaging Biol
                Springer Nature
                1536-1632
                1860-2002
                February 2016
                June 30 2015
                : 18
                : 1
                : 99-108
                Article
                10.1007/s11307-015-0873-1
                26122428
                1f9272a7-7a30-4fd3-aba4-374e1828f34f
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article