15
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Alternative to Traditional Bedside Teaching During COVID-19: High-Fidelity Simulation-Based Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bedside teaching is integral to medical education and has been highlighted to improve clinical and communication skills, as well as clinical reasoning. Despite the significant advantages of bedside teaching, its usage within medical education has been declining, and COVID-19 has added additional challenges. The pandemic has resulted in a significant reduction in opportunities to deliver bedside teaching due to risk of viral exposure, patients declining student interactions, and ward closures. Educators have therefore been required to be innovative in their teaching methods, leading to the use of online learning, social media platforms, and simulation. Simulation-based education allows for learning in a low-risk environment and affords the opportunity for deliberated repeated practice with case standardization. The results demonstrate that simulation-based training can increase students’ confidence, increase the rates of correct clinical diagnoses, and improve retention of skills and knowledge when compared with traditional teaching methods.

          Objective

          To mitigate the impact of COVID-19 upon bedside teaching for third year students at Hull York Medical School amid closure of the cardiorespiratory wards, a high-fidelity simulation-based model of traditional bedside teaching was designed and implemented. The objectives of the teaching session were to enable students to perform history taking and a focused cardiorespiratory clinical examination in a COVID-19–safe environment using SimMan 3G.

          Methods

          Four clinical teaching fellows with experience of simulation-based medical education scripted histories for 2 common cardiorespiratory cases, which were asthma and aortic stenosis. The simulation sessions were designed for students to take a focused cardiorespiratory history and clinical examination using SimMan 3G. All cases involved dynamic vital signs, and the simulator allowed for auscultation of an ejection systolic murmur and wheezing in accordance with the cases chosen. Key aspects of the pathologies, including epidemiology, differential diagnoses, investigations, and management, were summarized using an interactive PowerPoint presentation, followed by a debriefing session.

          Results

          In total, 12 third year medical students undertook the sessions, and overall feedback was highly positive. Of the 10 students who completed the feedback questionnaires, 90% (n=9) felt more confident in their clinical examination skills following the teaching; 100% (n=10) of the students responded that they would recommend the session to a colleague; and implementation of regular simulation was frequently requested on feedback. These results are in keeping with the current literature.

          Conclusions

          Bedside teaching continues to face ongoing challenges from the COVID-19 pandemic as well as declining patient recruitment and fluctuations in clinical findings. The support for simulation-based medical education is derived from high-quality studies; however, studies describing the use of this technology for bedside teaching in the undergraduate curriculum are limited. The authors describe a highly effective teaching session amid the pandemic, which allowed for maintenance of staff and student safety alongside continued education during a challenging time for educators globally.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Medical and Surgical Education Challenges and Innovations in the COVID-19 Era: A Systematic Review

          The aim of this systematic review was to identify the challenges imposed on medical and surgical education by the COVID-19 pandemic, and the proposed innovations enabling the continuation of medical student and resident training. A systematic review on the MEDLINE and EMBASE databases was performed on April 18th, 2020, and yielded 1288 articles. Sixty-one of the included manuscripts were synthesized in a qualitative description focused on two major axes, "challenges" and "innovative solutions", and two minor axes, "mental health" and "medical students in the frontlines". Shortage of personal protective equipment, suspension of clinical clerkships and observerships and reduction in elective surgical cases unavoidably affect medical and surgical education. Interesting solutions involving the use of virtual learning, videoconferencing, social media and telemedicine could effectively tackle the sudden cease in medical education. Furthermore, trainee's mental health should be safeguarded, and medical students can be involved in the COVID-19 clinical treatment if needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A critical review of simulation-based medical education research: 2003-2009.

            This article reviews and critically evaluates historical and contemporary research on simulation-based medical education (SBME). It also presents and discusses 12 features and best practices of SBME that teachers should know in order to use medical simulation technology to maximum educational benefit. This qualitative synthesis of SBME research and scholarship was carried out in two stages. Firstly, we summarised the results of three SBME research reviews covering the years 1969-2003. Secondly, we performed a selective, critical review of SBME research and scholarship published during 2003-2009. The historical and contemporary research synthesis is reported to inform the medical education community about 12 features and best practices of SBME: (i) feedback; (ii) deliberate practice; (iii) curriculum integration; (iv) outcome measurement; (v) simulation fidelity; (vi) skill acquisition and maintenance; (vii) mastery learning; (viii) transfer to practice; (ix) team training; (x) high-stakes testing; (xi) instructor training, and (xii) educational and professional context. Each of these is discussed in the light of available evidence. The scientific quality of contemporary SBME research is much improved compared with the historical record. Development of and research into SBME have grown and matured over the past 40 years on substantive and methodological grounds. We believe the impact and educational utility of SBME are likely to increase in the future. More thematic programmes of research are needed. Simulation-based medical education is a complex service intervention that needs to be planned and practised with attention to organisational contexts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simulation in healthcare education: a best evidence practical guide. AMEE Guide No. 82.

              Over the past two decades, there has been an exponential and enthusiastic adoption of simulation in healthcare education internationally. Medicine has learned much from professions that have established programs in simulation for training, such as aviation, the military and space exploration. Increased demands on training hours, limited patient encounters, and a focus on patient safety have led to a new paradigm of education in healthcare that increasingly involves technology and innovative ways to provide a standardized curriculum. A robust body of literature is growing, seeking to answer the question of how best to use simulation in healthcare education. Building on the groundwork of the Best Evidence in Medical Education (BEME) Guide on the features of simulators that lead to effective learning, this current Guide provides practical guidance to aid educators in effectively using simulation for training. It is a selective review to describe best practices and illustrative case studies. This Guide is the second part of a two-part AMEE Guide on simulation in healthcare education. The first Guide focuses on building a simulation program, and discusses more operational topics such as types of simulators, simulation center structure and set-up, fidelity management, and scenario engineering, as well as faculty preparation. This Guide will focus on the educational principles that lead to effective learning, and include topics such as feedback and debriefing, deliberate practice, and curriculum integration - all central to simulation efficacy. The important subjects of mastery learning, range of difficulty, capturing clinical variation, and individualized learning are also examined. Finally, we discuss approaches to team training and suggest future directions. Each section follows a framework of background and definition, its importance to effective use of simulation, practical points with examples, and challenges generally encountered. Simulation-based healthcare education has great potential for use throughout the healthcare education continuum, from undergraduate to continuing education. It can also be used to train a variety of healthcare providers in different disciplines from novices to experts. This Guide aims to equip healthcare educators with the tools to use this learning modality to its full capability.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Med Educ
                JMIR Med Educ
                JME
                JMIR Medical Education
                JMIR Publications (Toronto, Canada )
                2369-3762
                Apr-Jun 2022
                9 May 2022
                9 May 2022
                : 8
                : 2
                : e33565
                Affiliations
                [1 ] Hull York Medical School Hull University Teaching Hospitals NHS Trust Hull United Kingdom
                Author notes
                Corresponding Author: Shereen Ajab shereen.ajab@ 123456nhs.net
                Author information
                https://orcid.org/0000-0002-6077-621X
                https://orcid.org/0000-0003-0833-0795
                https://orcid.org/0000-0001-8180-3144
                https://orcid.org/0000-0001-9817-6220
                https://orcid.org/0000-0003-1760-6677
                https://orcid.org/0000-0002-3575-0616
                https://orcid.org/0000-0002-5211-3512
                Article
                v8i2e33565
                10.2196/33565
                9089324
                35404828
                1f96d883-fc68-4255-9a43-8764b7600a95
                ©Shereen Ajab, Emma Pearson, Steven Dumont, Alicia Mitchell, Jack Kastelik, Packianathaswamy Balaji, David Hepburn. Originally published in JMIR Medical Education (https://mededu.jmir.org), 09.05.2022.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Education, is properly cited. The complete bibliographic information, a link to the original publication on https://mededu.jmir.org/, as well as this copyright and license information must be included.

                History
                : 13 September 2021
                : 20 November 2021
                : 13 March 2022
                : 7 April 2022
                Categories
                Original Paper
                Original Paper

                simulation,high fidelity,low fidelity,covid-19,bedside teaching,undergraduate medical education,fidelity,medical education,medical student,review,innovation,risk,design,implementation

                Comments

                Comment on this article