14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MMP‐13 deletion decreases profibrogenic molecules and attenuates N‐nitrosodimethylamine‐induced liver injury and fibrosis in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Connective tissue growth factor ( CTGF) is involved in inflammation, pathogenesis and progression of liver fibrosis. Matrix metalloproteinase‐13 ( MMP‐13) cleaves CTGF and releases several fragments, which are more potent than the parent molecule to induce fibrosis. The current study was aimed to elucidate the significance of MMP‐13 and CTGF and their downstream effects in liver injury and fibrosis. Hepatic fibrosis was induced using intraperitoneal injections of N‐nitrosodimethylamine ( NDMA) in doses of 10 μg/g body weight on three consecutive days of each week over a period of 4 weeks in both wild‐type ( WT) and MMP‐13 knockout mice. Administration of NDMA resulted in marked elevation of AST, ALT, TGF‐β1 and hyaluronic acid in the serum and activation of stellate cells, massive necrosis, deposition of collagen fibres and increase in total collagen in the liver of WT mice with a significant decrease in MMP‐13 knockout mice. Protein and mRNA levels of CTGF, TGF‐β1, α‐ SMA and type I collagen and the levels of MMP‐2, MMP‐9 and cleaved products of CTGF were markedly increased in NDMA‐treated WT mice compared to the MMP‐13 knockout mice. Blocking of MMP‐13 with CL‐82198 in hepatic stellate cell cultures resulted in marked decrease of the staining intensity of CTGF as well as protein levels of full‐length CTGF and its C‐terminal fragments and active TGF‐β1. The data demonstrate that MMP‐13 and CTGF play a crucial role in modulation of fibrogenic mediators and promote hepatic fibrogenesis. Furthermore, the study suggests that blocking of MMP‐13 and CTGF has potential therapeutic implications to arrest liver fibrosis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification.

            Collagenase-3 (MMP13), a member of the matrix metalloproteinase (MMP) family of neutral endopeptidases, is expressed in the skeleton during embryonic development and is highly overexpressed in human carcinomas and in chondrocytes and synovial cells in rheumatoid arthritis and osteoarthritis. To determine the functional roles of Mmp13, we generated Mmp13-null mice that showed profound defects in growth plate cartilage with markedly increased hypertrophic domains as well as delay in endochondral ossification and formation and vascularization of primary ossification centers. Absence of Mmp13 resulted in significant interstitial collagen accumulation due, in part, to the lack of appropriate collagenase-mediated cleavage that normally occurs in growth plates and primary ossification centers. Cartilaginous growth plate abnormalities persisted in adult mice and phenocopied defects observed in human hereditary chondrodysplasias. Our findings demonstrate a unique role of Mmp13 in skeletal development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10

              Human umbilical vein endothelial (HUVE) cells have been previously reported to express the genes for the A and B chains of PDGF and to secrete PDGF-related factors into culture media. Antihuman PDGF IgG affinity chromatography was used to purify PDGF-related activity from HUVE cell-conditioned media. Immunoblot analysis of the affinity- purified proteins with anti-PDGF IgG and antibodies specific for the A or B chain peptides of PDGF combined with chemotactic and mitogenic assays revealed that the major PDGF immunorelated molecule secreted by HUVE cells is a monomer of approximately 36-38 kD and that less than 10% of the purified biologically active molecules are PDGF A or B chain peptides. Screening of an HUVE cell cDNA library in the expression vector lambda gtl 1 with the anti-PDGF antibody resulted in the cloning and sequencing of a cDNA with an open reading frame encoding a 38-kD cysteine-rich secreted protein which we show to be the major PDGF- related mitogen secreted by human vascular endothelial cells. The protein has a 45% overall homology to the translation product of the v- src-induced CEF-10 mRNA from chick embryo fibroblasts. We have termed this new mitogen connective tissue growth factor.
                Bookmark

                Author and article information

                Contributors
                mutsumi@kanazawa-med.ac.jp
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                07 August 2017
                December 2017
                : 21
                : 12 ( doiID: 10.1111/jcmm.2017.21.issue-12 )
                : 3821-3835
                Affiliations
                [ 1 ] Department of Medicine Division of Molecular Medicine College of Physicians and Surgeons Columbia University New York NY USA
                [ 2 ] Department of Hepatology Kanazawa Medical University Uchinada Ishikawa Japan
                Author notes
                [*] [* ] Correspondence to: Mutsumi TSUCHISHIMA, M.D., Ph.D.

                E‐mail: mutsumi@ 123456kanazawa-med.ac.jp

                Author information
                http://orcid.org/0000-0001-5354-7884
                Article
                JCMM13304
                10.1111/jcmm.13304
                5706575
                28782260
                1fd09a45-e433-4aec-912c-18cbe6c44ace
                © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 March 2017
                : 05 June 2017
                Page count
                Figures: 9, Tables: 1, Pages: 15, Words: 10064
                Funding
                Funded by: Kanazawa Medical University
                Award ID: SR 2013–2015
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                jcmm13304
                December 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.6.1 mode:remove_FC converted:29.11.2017

                Molecular medicine
                connective tissue growth factor,n‐nitrosodimethylamine,ndma,mmp‐13,hepatic fibrosis

                Comments

                Comment on this article