9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hemodynamic forces using four-dimensional flow MRI: an independent biomarker of cardiac function in heart failure with left ventricular dyssynchrony?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure

          Aims Cardiac resynchronization therapy (CRT) with or without a defibrillator reduces morbidity and mortality in selected patients with heart failure (HF) but response can be variable. We sought to identify pre-implantation variables that predict the response to CRT in a meta-analysis using individual patient-data. Methods and results An individual patient meta-analysis of five randomized trials, funded by Medtronic, comparing CRT either with no active device or with a defibrillator was conducted, including the following baseline variables: age, sex, New York Heart Association class, aetiology, QRS morphology, QRS duration, left ventricular ejection fraction (LVEF), and systolic blood pressure. Outcomes were all-cause mortality and first hospitalization for HF or death. Of 3782 patients in sinus rhythm, median (inter-quartile range) age was 66 (58–73) years, QRS duration was 160 (146–176) ms, LVEF was 24 (20–28)%, and 78% had left bundle branch block. A multivariable model suggested that only QRS duration predicted the magnitude of the effect of CRT on outcomes. Further analysis produced estimated hazard ratios for the effect of CRT on all-cause mortality and on the composite of first hospitalization for HF or death that suggested increasing benefit with increasing QRS duration, the 95% confidence bounds excluding 1.0 at ∼140 ms for each endpoint, suggesting a high probability of substantial benefit from CRT when QRS duration exceeds this value. Conclusion QRS duration is a powerful predictor of the effects of CRT on morbidity and mortality in patients with symptomatic HF and left ventricular systolic dysfunction who are in sinus rhythm. QRS morphology did not provide additional information about clinical response. ClinicalTrials.gov numbers NCT00170300, NCT00271154, NCT00251251.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haemodynamic shear stress activates a K+ current in vascular endothelial cells.

            The endothelial lining of blood vessels is subjected to a wide range of haemodynamically-generated shear-stress forces throughout the vascular system. In vivo and in vitro, endothelial cells change their morphology and biochemistry in response to shear stress in a force- and time-dependent way, or when a critical threshold is exceeded. The initial stimulus-response coupling mechanisms have not been identified, however. Recently, Lansman et al. described stretch-activated ion channels in endothelial cells and suggested that they could be involved in the response to mechanical forces generated by blood flow. The channels were relatively nonselective and were opened by membrane stretching induced by suction. Here we report whole-cell patch-clamp recordings of single arterial endothelial cells exposed to controlled levels of laminar shear stress in capillary flow tubes. A K+ selective, shear-stress-activated ionic current (designated Ik.s) was identified which is unlike previously described stretch-activated currents. Ik.s varies in magnitude and duration as a function of shear stress (half-maximal effect at 0.70 dyn cm-2), desensitizes slowly and recovers rapidly and fully on cessation of flow. Ik.s activity represents the earliest and fastest stimulus-response coupling of haemodynamic forces to endothelial cells yet found. We suggest that localized flow-activated hyperpolarization of endothelium involving Ik.s may participate in the regulation of vascular tone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The vortex--an early predictor of cardiovascular outcome?

              Blood motion in the heart features vortices that accompany the redirection of jet flows towards the outlet tracks. Vortices have a crucial role in fluid dynamics. The stability of cardiac vorticity is vital to the dynamic balance between rotating blood and myocardial tissue and to the development of cardiac dysfunction. Moreover, vortex dynamics immediately reflect physiological changes to the surrounding system, and can provide early indications of long-term outcome. However, the pathophysiological relevance of cardiac fluid dynamics is still unknown. We postulate that maladaptive intracardiac vortex dynamics might modulate the progressive remodelling of the left ventricle towards heart failure. The evaluation of blood flow presents a new paradigm in cardiac function analysis, with the potential for sensitive risk identification of cardiac abnormalities. Description of cardiac flow patterns after surgery or device therapy provides an intrinsic qualitative evaluation of therapeutic procedures, and could enable early risk stratification of patients vulnerable to adverse cardiac remodelling.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Heart and Circulatory Physiology
                American Journal of Physiology-Heart and Circulatory Physiology
                American Physiological Society
                0363-6135
                1522-1539
                December 2018
                December 2018
                : 315
                : 6
                : H1627-H1639
                Affiliations
                [1 ]Lund University, Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund, Sweden
                [2 ]Department of Engineering and Architecture, University of Trieste, Trieste, Italy
                [3 ]Department of Biomedical Engineering, Lund University, Faculty of Engineering, Lund, Sweden
                [4 ]Lund University, Department of Cardiology, Arrhythmia Clinic, Skane University Hospital, Lund, Sweden
                Article
                10.1152/ajpheart.00112.2018
                30216113
                2014ff3b-795e-4735-9d39-282016fa6d8f
                © 2018
                History

                Comments

                Comment on this article