6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Signature of Quantum Criticality in the Density Profiles of Cold Atom Systems

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, there is considerable experimental effort using cold atoms to study strongly correlated many-body systems. One class of phenomena of particularly interests is quantum critical (QC) phenomena. While prevalent in many materials, these phenomena are notoriously difficult theoretical problems due to the vanishing of energy scales in QC region. So far, there are no systematic ways to deduce QC behavior of bulk systems from the data of trapped atomic gases. Here, we present a simple algorithm to use the experimental density profile to determine the T=0 phase boundary of bulk systems, as well as the scaling functions in QC regime. We also present another scheme for removing finite size effects of the trap. We demonstrate the validity of our schemes using exactly soluble models.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: not found
          • Article: not found

          Boson localization and the superfluid-insulator transition

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Mott insulator of fermionic atoms in an optical lattice

            , , (2010)
            In a solid material strong interactions between the electrons can lead to surprising properties. A prime example is the Mott insulator, where the suppression of conductivity is a result of interactions and not the consequence of a filled Bloch band. The proximity to the Mott insulating phase in fermionic systems is the origin for many intriguing phenomena in condensed matter physics, most notably high-temperature superconductivity. Therefore it is highly desirable to use the novel experimental tools developed in atomic physics to access this regime. Indeed, the Hubbard model, which encompasses the essential physics of the Mott insulator, also applies to quantum gases trapped in an optical lattice. However, the Mott insulating regime has so far been reached only with a gas of bosons, lacking the rich and peculiar nature of fermions. Here we report on the formation of a Mott insulator of a repulsively interacting two-component Fermi gas in an optical lattice. It is signalled by three features: a drastic suppression of doubly occupied lattice sites, a strong reduction of the compressibility inferred from the response of double occupancy to atom number increase, and the appearance of a gapped mode in the excitation spectrum. Direct control of the interaction strength allows us to compare the Mott insulating and the non-interacting regime without changing tunnel-coupling or confinement. Our results pave the way for further studies of the Mott insulator, including spin ordering and ultimately the question of d-wave superfluidity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Exploring the Thermodynamics of a Universal Fermi Gas

              From sand piles to electrons in metals, one of the greatest challenges in modern physics is to understand the behavior of an ensemble of strongly interacting particles. A class of quantum many-body systems such as neutron matter and cold Fermi gases share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit [1,2]. It is then possible to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap [3-5], making it difficult to compare with many-body theories developed for uniform gases. Here we develop a general method that provides for the first time the equation of state of a uniform gas, as well as a detailed comparison with existing theories [6,14]. The precision of our equation of state leads to new physical insights on the unitary gas. For the unpolarized gas, we prove that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2% accuracy and it extends the work of [15] on the phase diagram to a new regime of precision. We show in particular that, despite strong correlations, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons [10,16-18].
                Bookmark

                Author and article information

                Journal
                07 June 2010
                Article
                10.1103/PhysRevLett.105.245702
                1006.1174
                214d3b4a-fe08-4f37-bd5e-aa51dd44e275

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. Lett. 105, 245702 (2010)
                4 pages, 5 figures
                cond-mat.quant-gas

                Comments

                Comment on this article