0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Cluster Dynamics to Model Electrical Resistivity Measurements in Precipitating Al-Sc Alloys

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrical resistivity evolution during precipitation in Al-Sc alloys is modeled using cluster dynamics. This mesoscopic modeling has already been shown to correctly predict the time evolution of the precipitate size distribution. In this work, we show that it leads too to resistivity predictions in quantitative agreement with experimental data. We only assume that all clusters contribute to the resistivity and that each cluster contribution is proportional to its area. One interesting result is that the resistivity excess observed during coarsening mainly arises from large clusters and not really from the solid solution. As a consequence, one cannot assume that resistivity asymptotic behavior obeys a simple power law as predicted by LSW theory for the solid solution supersaturation. This forbids any derivation of the precipitate interface free energy or of the solute diffusion coefficient from resistivity experimental data in a phase-separating system like Al-Sc supersaturated alloys.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: not found
          • Article: not found

          Multiscale modelling of defect kinetics in irradiated iron

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex precipitation pathways in multicomponent alloys.

            One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al-Zr-Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al-Zr-Sc alloys compared with binary Al-Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trans-interface diffusion-controlled coarsening.

              Accurate theoretical predictions of the volume-fraction dependence during diffusion-controlled coarsening of a polydisperse assembly of particles have proved difficult. Here, a new model of coarsening is presented, involving diffusive transport through the coherent interface between ordered and disordered phases, which atomistic calculations show has a ragged structure. The interface is a diffusion bottleneck when the ordered phase is dispersed. It is predicted that the square of the average radius grows linearly with time, that the depletion of solute decreases as the inverse square-root of time, and that there is no effect of volume fraction on kinetics and the scaled particle-size distributions. These differ dramatically from predictions of modern theories of diffusion-controlled coarsening. Data on coarsening in Ni-Al alloys is examined. We show that no other theory is consistent with the experimentally observed absence of an effect of volume fraction on coarsening of ordered gamma' (Ni3Al) precipitates in a disordered Ni-Al (gamma) matrix, and the strong volume-fraction dependence of coarsening of gamma precipitates in an ordered gamma' matrix.
                Bookmark

                Author and article information

                Journal
                20 November 2006
                Article
                10.1016/j.actamat.2006.08.021
                cond-mat/0611524
                21857b13-c9c5-45ef-ab30-dba3096d526b
                History
                Custom metadata
                Acta Materialia 55 (2007) 391-400
                cond-mat.mtrl-sci
                ccsd hal-00115193

                Comments

                Comment on this article