Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      BK virus: Current understanding of pathogenicity and clinical disease in transplantation

      1 , 2 , 2 , 3 , 1 , 1
      Reviews in Medical Virology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Cell-Free DNA and Active Rejection in Kidney Allografts.

          Histologic analysis of the allograft biopsy specimen is the standard method used to differentiate rejection from other injury in kidney transplants. Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive test of allograft injury that may enable more frequent, quantitative, and safer assessment of allograft rejection and injury status. To investigate this possibility, we prospectively collected blood specimens at scheduled intervals and at the time of clinically indicated biopsies. In 102 kidney recipients, we measured plasma levels of dd-cfDNA and correlated the levels with allograft rejection status ascertained by histology in 107 biopsy specimens. The dd-cfDNA level discriminated between biopsy specimens showing any rejection (T cell-mediated rejection or antibody-mediated rejection [ABMR]) and controls (no rejection histologically), P 1% indicate a probability of active rejection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BK polyomavirus in solid organ transplantation.

            The human BK polyomavirus (BKV) is the major cause of polyomavirus-associated nephropathy (PyVAN) putting 1-15% of kidney transplant patients at risk of premature allograft failure, but is less common in other solid organ transplants. Because effective antiviral therapies are lacking, screening kidney transplant patients for BKV replication in urine and blood has become the key recommendation to guide the reduction of immunosuppression in patients with BKV viremia. This intervention allows for expanding BKV-specific cellular immune responses, curtailing of BKV replication in the graft, and clearance of BKV viremia in 70-90% patients. Postintervention rejection episodes occur in 8-12%, most of which are corticosteroid responsive. Late diagnosis is faced with irreversible functional decline, poor treatment response, and graft loss. Adjunct therapies such as cidofovir, leflunomide and intravenous immunoglobulins have been used, but the benefit is not documented in trials. Retransplantation after PyVAN is largely successful, but requires close monitoring for recurrent BKV viremia. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced exposure to calcineurin inhibitors in renal transplantation.

              Immunosuppressive regimens with the fewest possible toxic effects are desirable for transplant recipients. This study evaluated the efficacy and relative toxic effects of four immunosuppressive regimens. We randomly assigned 1645 renal-transplant recipients to receive standard-dose cyclosporine, mycophenolate mofetil, and corticosteroids, or daclizumab induction, mycophenolate mofetil, and corticosteroids in combination with low-dose cyclosporine, low-dose tacrolimus, or low-dose sirolimus. The primary end point was the estimated glomerular filtration rate (GFR), as calculated by the Cockcroft-Gault formula, 12 months after transplantation. Secondary end points included acute rejection and allograft survival. The mean calculated GFR was higher in patients receiving low-dose tacrolimus (65.4 ml per minute) than in the other three groups (range, 56.7 to 59.4 ml per minute). The rate of biopsy-proven acute rejection was lower in patients receiving low-dose tacrolimus (12.3%) than in those receiving standard-dose cyclosporine (25.8%), low-dose cyclosporine (24.0%), or low-dose sirolimus (37.2%). Allograft survival differed significantly among the four groups (P=0.02) and was highest in the low-dose tacrolimus group (94.2%), followed by the low-dose cyclosporine group (93.1%), the standard-dose cyclosporine group (89.3%), and the low-dose sirolimus group (89.3%). Serious adverse events were more common in the low-dose sirolimus group than in the other groups (53.2% vs. a range of 43.4 to 44.3%), although a similar proportion of patients in each group had at least one adverse event during treatment (86.3 to 90.5%). A regimen of daclizumab, mycophenolate mofetil, and corticosteroids in combination with low-dose tacrolimus may be advantageous for renal function, allograft survival, and acute rejection rates, as compared with regimens containing daclizumab induction plus either low-dose cyclosporine or low-dose sirolimus or with standard-dose cyclosporine without induction. (ClinicalTrials.gov number, NCT00231764 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Reviews in Medical Virology
                Rev Med Virol
                Wiley
                1052-9276
                1099-1654
                April 08 2019
                April 08 2019
                : e2044
                Affiliations
                [1 ]Department of Renal Medicine, Royal Free HospitalUniversity College London London UK
                [2 ]School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds London UK
                [3 ]Institute of Immunity and Transplantation, Royal Free HospitalUniversity College London London UK
                Article
                10.1002/rmv.2044
                30958614
                2188a4f0-0e9c-4708-bbde-08607e728f25
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article