1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pituitary Stem Cell Regulation by Zeb2 and BMP Signaling

      ,
      Endocrinology
      The Endocrine Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epithelial to mesenchymal transition (EMT) is important for many developing organs, and for wound healing, fibrosis, and cancer. Pituitary stem cells undergo an EMT-like process as they migrate and initiate differentiation, but little is known about the input of signaling pathways or the genetic hierarchy of the transcriptional cascade. Prop1 mutant stem cells fail to undergo changes in cellular morphology, migration, and transition to the Pou1f1 lineage. We used Prop1 mutant mice to identify the changes in gene expression that are affiliated with EMT-like processes. BMP and TGF-β family gene expression was reduced in Prop1 mutants and Elf5, a transcription factor that characteristically suppresses EMT, had elevated expression. Genes involved in cell-cell contact such as cadherins and claudins were elevated in Prop1 mutants. To establish the genetic hierarchy of control, we manipulated gene expression in pituitary stem cell colonies. We determined that the EMT inducer, Zeb2, is necessary for robust BMP signaling and repression of Elf5. We demonstrated that inhibition of BMP signaling affects expression of target genes in the Id family, but it does not affect expression of other EMT genes. Zeb2 is necessary for expression of the SHH effector gene Gli2. However, knock down of Gli2 has little effect on the EMT-related genes, suggesting that it acts through a separate pathway. Thus, we have established the genetic hierarchy involved in the transition of pituitary stem cells to differentiation.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          PUVA-induced repigmentation of vitiligo: scanning electron microscopy of hair follicles.

          PUVA-i-duced repigmentation of vitiligo was studied using both the split-dopa reaction and scanning electron microscopy. Proliferation of hypertrophic, Dopa-positive melanocytes were observed in the lower portion of some hair follicles, whereas other giant melanocytes were observed along the middle portion. The existence of a melanocyte reservoir in human hair follicles is postulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-beta-induced epithelial to mesenchymal transition.

            During development and in the context of different morphogenetic events, epithelial cells undergo a process called epithelial to mesenchymal transition or transdifferentiation (EMT). In this process, the cells lose their epithelial characteristics, including their polarity and specialized cell-cell contacts, and acquire a migratory behavior, allowing them to move away from their epithelial cell community and to integrate into surrounding tissue, even at remote locations. EMT illustrates the differentiation plasticity during development and is complemented by another process, called mesenchymal to epithelial transition (MET). While being an integral process during development, EMT is also recapitulated under pathological conditions, prominently in fibrosis and in invasion and metastasis of carcinomas. Accordingly, EMT is considered as an important step in tumor progression. TGF-beta signaling has been shown to play an important role in EMT. In fact, adding TGF-beta to epithelial cells in culture is a convenient way to induce EMT in various epithelial cells. Although much less characterized, epithelial plasticity can also be regulated by TGF-beta-related bone morphogenetic proteins (BMPs), and BMPs have been shown to induce EMT or MET depending on the developmental context. In this review, we will discuss the induction of EMT in response to TGF-beta, and focus on the underlying signaling and transcription mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling mechanisms of the epithelial-mesenchymal transition.

              The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Endocrinology
                The Endocrine Society
                1945-7170
                March 01 2023
                January 09 2023
                March 01 2023
                January 09 2023
                January 23 2023
                : 164
                : 3
                Article
                10.1210/endocr/bqad016
                10091485
                36683433
                21b7926e-987f-40bd-8c8c-c1241ce2f0c2
                © 2023

                https://academic.oup.com/pages/standard-publication-reuse-rights

                History

                Comments

                Comment on this article