Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zinc oxide nanoparticles (ZnO NPs) are one of the most broadly used engineered nanomaterials. The toxicity potential of ZnO NPs has been explored in several studies; however, its neurotoxicity, especially its molecular mechanism, has not been studied in depth. In this study, we have used a cellular model of neuronal differentiation (nerve growth factor differentiated PC12 cells) to compare the effect of ZnO NPs exposure on neuronal (differentiated or mature neurons) and non-neuronal (undifferentiated) cells. Our studies have shown that the noncytotoxic concentration of ZnO NPs causes neurite shortening and degeneration in differentiated PC12 cells. Brain-specific microRNA (miRNA) array and liquid chromatography with tandem mass spectrometry (LC-MS/MS) are used to carry out profiling of miRNAs and proteins in PC12 cells exposed with ZnO NPs. Exposure of ZnO NPs produced significant deregulation of a higher number of miRNAs (15) and proteins (267) in neuronal cells in comparison to miRNAs (8) and proteins (207) of non-neuronal cells (8). In silico pathway analysis of miRNAs and proteins deregulated in ZnO NPs exposed differentiated PC12 cells have shown pathways leading to neurodegenerative diseases and mitochondrial dysfunctions are primarily targeted pathways. Further, a bioenergetics study carried out using Seahorse XFp metabolic flux analyzer has confirmed the involvement of mitochondrial dysfunctions in ZnO NPs exposed differentiated PC12 cells. In conclusion, differentiated PC12 cells (neuronal) were found more vulnerable than undifferentiated (non-neuronal PC12 cells) toward the exposure of ZnO NPs and deregulation of miRNAs and mitochondrial dysfunctions play a significant role in its toxicity.

          Related collections

          Author and article information

          Journal
          Nanotoxicology
          Nanotoxicology
          Informa UK Limited
          1743-5404
          1743-5390
          Aug 2020
          : 14
          : 6
          Affiliations
          [1 ] Developmental Toxicology Laboratory, Systems Toxicology, and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
          [2 ] Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
          [3 ] All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
          Article
          10.1080/17435390.2020.1759726
          32393089
          21d69ffd-5b1b-4514-abd7-c938ba42a14b
          History

          MicroRNA,ZnO nanoparticles,cellular bioenergetics,neuronal differentiation,proteomics

          Comments

          Comment on this article