15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating the Performance of 3D-Printed PLA Reinforced with Date Pit Particles for Its Suitability as an Acetabular Liner in Artificial Hip Joints

        , , ,  
      Polymers
      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Off-the-shelf hip joints are considered essential parts in rehabilitation medicine that can help the disabled. However, the failure of the materials used in such joints can cause individual discomfort. In support of the various motor conditions of the influenced individuals, the aim of the current research is to develop a new composite that can be used as an acetabular liner inside the hip joint. Polylactic acid (PLA) can provide the advantage of design flexibility owing to its well-known applicability as a 3D printed material. However, using PLA as an acetabular liner is subject to limitations concerning mechanical properties. We developed a complete production process of a natural filler, i.e., date pits. Then, the PLA and date pit particles were extruded for homogenous mixing, producing a composite filament that can be used in 3D printing. Date pit particles with loading fractions of 0, 2, 4, 6, 8, and 10 wt.% are dispersed in the PLA. The thermal, physical, and mechanical properties of the PLA–date pit composites were estimated experimentally. The incorporation of date pit particles into PLA enhanced the compressive strength and stiffness but resulted in a reduction in the elongation and toughness. A finite element model (FEM) for hip joints was constructed, and the contact stresses on the surface of the acetabular liner were evaluated. The FEM results showed an enhancement in the composite load carrying capacity, in agreement with the experimental results.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The operation of the century: total hip replacement.

          In the 1960s, total hip replacement revolutionised management of elderly patients crippled with arthritis, with very good long-term results. Today, young patients present for hip-replacement surgery hoping to restore their quality of life, which typically includes physically demanding activities. Advances in bioengineering technology have driven development of hip prostheses. Both cemented and uncemented hips can provide durable fixation. Better materials and design have allowed use of large-bore bearings, which provide an increased range of motion with enhanced stability and very low wear. Minimally invasive surgery limits soft-tissue damage and facilitates accelerated discharge and rehabilitation. Short-term objectives must not compromise long-term performance. Computer-assisted surgery will contribute to reproducible and accurate placement of implants. Universal economic constraints in healthcare services dictate that further developments in total hip replacement will be governed by their cost-effectiveness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            3D Printed Bionic Ears

            The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Starch granules: structure and biosynthesis.

              The emphasis of this review is on starch structure and its biosynthesis. Improvements in understanding have been brought about during the last decade through the development of new physicochemical and biological techniques, leading to real scientific progress. All this literature needs to be kept inside the general literature about biopolymers, despite some confusing results or discrepancies arising from the biological variability of starch. However, a coherent picture of starch over all the different structural levels can be presented, in order to obtain some generalizations about its structure. In this review we will focus first on our present understanding of the structures of amylose and amylopectin and their organization within the granule, and we will then give insights on the biosynthetic mechanisms explaining the biogenesis of starch in plants.
                Bookmark

                Author and article information

                Contributors
                Journal
                POLYCK
                Polymers
                Polymers
                MDPI AG
                2073-4360
                August 2022
                August 15 2022
                : 14
                : 16
                : 3321
                Article
                10.3390/polym14163321
                2202a73d-0a2a-4eaa-9eeb-f0d0d3509a83
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article