0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      l-Carnitine status in end-stage renal disease patients on automated peritoneal dialysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Serum metabolite concentrations and decreased GFR in the general population.

          Metabolites such as creatinine and urea are established kidney function markers. High-throughput metabolomic studies have not been reported in large general population samples spanning normal kidney function and chronic kidney disease (CKD). Cross-sectional observational studies of the general population. 2 independent samples: KORA F4 (discovery sample, n = 3,011) and Twins UK (validation sample, n = 984). EXPOSURE FACTORS: 151 serum metabolites, quantified by targeted mass spectrometry. Metabolites and their 22,650 ratios were analyzed by multivariable-adjusted linear regression for their association with glomerular filtration rate (eGFR), estimated separately from creatinine and cystatin C levels by CKD-EPI (CKD Epidemiology Collaboration) equations. After correction for multiple testing, significant metabolites (P < 3.3 × 10(-4) for single metabolites; P < 2.2 × 10(-6) for ratios) were meta-analyzed with independent data from the TwinsUK Study. Replicated associations with eGFR were observed for 22 metabolites and 516 metabolite ratios. Pooled P values ranged from 7.1 × 10(-7) to 1.8 × 10(-69) for the replicated single metabolites. Acylcarnitines such as glutarylcarnitine were associated inversely with eGFR (-3.73 mL/min/1.73 m(2) per standard deviation [SD] increase, pooled P = 1.8 × 10(-69)). The replicated ratio with the strongest association was the ratio of serine to glutarylcarnitine (P = 3.6 × 10(-81)). Almost all replicated phenotypes associated with decreased eGFR (<60 mL/min/1.73 m(2); n = 172 cases) in KORA F4: per 1-SD increment, ORs ranged from 0.29-2.06. Across categories of a metabolic score consisting of 3 uncorrelated metabolites, the prevalence of decreased eGFR increased from 3% to 53%. Cross-sectional study design, GFR was estimated, limited number of metabolites. Distinct metabolic phenotypes were reproducibly associated with eGFR in 2 separate population studies. They may provide novel insights into renal metabolite handling, improve understanding of pathophysiology, or aid in the diagnosis of kidney disease. Longitudinal studies are needed to clarify whether changes in metabolic phenotypes precede or result from kidney function impairment. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carnitine, mitochondrial function and therapy.

            Carnitine is important for cell function and survival primarily because of its involvement in the multiple equilibria between acylcarnitine and acyl-CoA esters established through the enzymatic activities of the family of carnitine acyltransferases. These have different acyl chain-length specificities and intracellular compartment distributions, and act in synchrony to regulate multiple aspects of metabolism, ranging from fuel-selection and -sensing, to the modulation of the signal transduction mechanisms involved in many homeostatic systems. This review aims to rationalise the extensive range of experimental and clinical data that have been obtained through the pharmacological use of L-carnitine and its short-chain acylesters, over the past two decades, in terms of the basic biochemical mechanisms involved in the effects of carnitine on the various cellular acyl-CoA pools in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carnitine acyltransferases and their influence on CoA pools in health and disease.

              Cells contain limited and sequestered pools of Coenzyme A (CoA) that are essential for activating carboxylate metabolites. Some acyl-CoA esters have high metabolic and signalling impact, so control of CoA ester concentrations is important. This and transfer of the activated acyl moieties between cell compartments without wasting energy on futile cycles of hydrolysis and resynthesis is achieved through the carnitine system. The location, properties of and deficiencies in the carnitine acyltransferases are described in relation to their influence on the CoA pools in the cell and, hence, on metabolism. The protection of free CoA pools in disease states is achieved by excretion of acyl-carnitine so that carnitine supplementation is required where unwanted acyl groups build up, such as in some inherited disorders of fatty acid oxidation. Acetyl-carnitine improves cognition in the brain and propionyl-carnitine improves cardiac performance in heart disease and diabetes. The therapeutic effects of carnitine and its esters are discussed in relation to the integrative influence of the carnitine system across CoA pools. Recent evidence for sequestered pools of activated acetate for synthesis of malonyl-CoA, for the synthesis of polyunsaturated fatty acids and for the inhibition of carnitine palmitoyltransferase 1 to regulate fatty acid oxidation is reviewed.
                Bookmark

                Author and article information

                Journal
                Journal of Nephrology
                J Nephrol
                Springer Nature
                1121-8428
                1724-6059
                December 2014
                March 6 2014
                December 2014
                : 27
                : 6
                : 699-706
                Article
                10.1007/s40620-014-0076-x
                24599831
                2203d0c5-0d17-47f7-b7af-1ab87b0f90ba
                © 2014
                History

                Comments

                Comment on this article