21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes.

      The Plant Journal
      Amino Acid Sequence, Arabidopsis, genetics, growth & development, Arabidopsis Proteins, metabolism, Base Sequence, Cell Nucleus, Gene Expression Regulation, Developmental, Gene Expression Regulation, Plant, Molecular Sequence Data, Plant Proteins, chemistry, Plants, Genetically Modified, Promoter Regions, Genetic, Sequence Deletion, Signal Transduction, Transcription Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          WRKY proteins constitute a large family of plant-specific transcription factors whose precise functions have yet to be elucidated. Here we show that expression of one representative in Arabidopsis, AtWRKY6, is influenced by several external and internal signals often involved in triggering senescence processes and plant defence responses. Progressive 5' deletions of the AtWRKY6 promoter allowed separation of defined regions responsible for the expression in distinct organs or upon pathogen challenge. Nuclear localization of AtWRKY6 was demonstrated; protein truncations and gain-of-function studies enabled delineation of a region harbouring a novel type of functional nuclear localization signal (NLS).

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptome of Arabidopsis thaliana during systemic acquired resistance.

          Infected plants undergo transcriptional reprogramming during initiation of both local defence and systemic acquired resistance (SAR). We monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray representing approximately 25-30% of all A. thaliana genes. We derived groups of genes with common regulation patterns, or regulons. The regulon containing PR-1, a reliable marker gene for SAR in A. thaliana, contains known PR genes and novel genes likely to function during SAR and disease resistance. We identified a common promoter element in genes of this regulon that binds members of a plant-specific transcription factor family. Our results extend expression profiling to definition of regulatory networks and gene discovery in plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors.

            Parsley WRKY proteins comprise a family of plant-specific zinc-finger-type factors implicated in the regulation of genes associated with pathogen defence. In vitro, these proteins bind specifically to functionally defined TGAC-containing W box promoter elements within the Pathogenesis-Related Class10 (PR-10) genes. Here we present in vivo data demonstrating that WRKY1 is a transcriptional activator mediating fungal elicitor-induced gene expression by binding to W box elements. In situ RNA hybridization revealed that the WRKY1 gene is rapidly and locally activated in parsley leaf tissue around fungal infection sites. Transient expression studies in parsley protoplasts showed that a specific arrangement of W box elements in the WRKY1 promoter itself is necessary and sufficient for early activation and that WRKY1 binds to such elements. Our results demonstrate that WRKY transcription factors play an important role in the regulation of early defence-response genes including regulation of WRKY1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms.

              The enzyme 4-coumarate:CoA ligase (4CL) plays a key role in channelling carbon flow into diverse branch pathways of phenylpropanoid metabolism which serve important functions in plant growth and adaptation to environmental perturbations. Here we report on the cloning of the 4CL gene family from Arabidopsis thaliana and demonstrate that its three members, At4CL1, At4CL2 and At4CL3, encode isozymes with distinct substrate preference and specificities. Expression studies revealed a differential behaviour of the three genes in various plant organs and upon external stimuli such as wounding and UV irradiation or upon challenge with the fungus, Peronospora parasitica. Phylogenetic comparisons indicate that, in angiosperms, 4CL can be classified into two major clusters, class I and class II, with the At4CL1 and At4CL2 isoforms belonging to class I and At4CL3 to class II. Based on their enzymatic properties, expression characteristics and evolutionary relationships, At4CL3 is likely to participate in the biosynthetic pathway leading to flavonoids whereas At4CL1 and At4CL2 are probably involved in lignin formation and in the production of additional phenolic compounds other than flavonoids.
                Bookmark

                Author and article information

                Comments

                Comment on this article