6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With rapid and brilliant progress in performance over recent years, perovskite solar cells have drawn increasing attention for portable power source applications.

          Abstract

          With rapid and brilliant progress in performance over recent years, perovskite solar cells have drawn increasing attention for portable power source applications. Their advantageous features such as high efficiency, low cost, light weight and flexibility should be maximized if a robust and reliable flexible transparent electrode is offered. Here we demonstrate highly efficient and reliable super flexible perovskite solar cells using graphene as a transparent electrode. The device performance reaches 16.8% with no hysteresis comparable to that of the counterpart fabricated on a flexible indium-tin-oxide electrode showing a maximum efficiency of 17.3%. The flexible devices also demonstrate superb stability against bending deformation, maintaining >90% of its original efficiency after 1000 bending cycles and 85% even after 5000 bending cycles with a bending radius of 2 mm. This overwhelming bending stability highlights that perovskite photovoltaics with graphene electrodes can pave the way for rollable and foldable photovoltaic applications.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

          We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transfer of large-area graphene films for high-performance transparent conductive electrodes.

            Graphene, a two-dimensional monolayer of sp(2)-bonded carbon atoms, has been attracting great interest due to its unique transport properties. One of the promising applications of graphene is as a transparent conductive electrode owing to its high optical transmittance and conductivity. In this paper, we report on an improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition. The transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications. The improved transfer processes will also be of great value for the fabrication of electronic devices such as field effect transistor and bilayer pseudospin field effect transistor devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide.

              High efficiency perovskite solar cells were fabricated reproducibly via Lewis base adduct of lead(II) iodide. PbI2 was dissolved in N,N-dimethyformamide with equimolar N,N-dimethyl sulfoxide (DMSO) and CH3NH3I. Stretching vibration of S═O appeared at 1045 cm(-1) for bare DMSO, which was shifted to 1020 and 1015 cm(-1) upon reacting DMSO with PbI2 and PbI2 + CH3NH3I, respectively, indicative of forming the adduct of PbI2·DMSO and CH3NH3I·PbI2·DMSO due to interaction between Lewis base DMSO and/or iodide (I(-)) and Lewis acid PbI2. Spin-coating of a DMF solution containing PbI2, CH3NH3I, and DMSO (1:1:1 mol %) formed a transparent adduct film, which was converted to a dark brown film upon heating at low temperature of 65 °C for 1 min due to removal of the volatile DMSO from the adduct. The adduct-induced CH3NH3PbI3 exhibited high charge extraction characteristics with hole mobility as high as 3.9 × 10(-3) cm(2)/(V s) and slow recombination rate. Average power conversion efficiency (PCE) of 18.3% was achieved from 41 cells and the best PCE of 19.7% was attained via adduct approach.
                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2017
                2017
                : 10
                : 1
                : 337-345
                Affiliations
                [1 ]Global Frontier Center for Multiscale Energy Systems
                [2 ]Seoul National University
                [3 ]Seoul
                [4 ]Republic of Korea
                [5 ]Department of Mechanical and Aerospace Engineering
                [6 ]Samsung Display Co., Ltd
                [7 ]Asan 31454
                [8 ]School of Advanced Materials Science and Engineering
                [9 ]Sungkyunkwan University
                [10 ]Suwon 16419
                Article
                10.1039/C6EE02650H
                2267109d-eaf4-4cc1-96e7-71fc1c15d353
                © 2017
                History

                Comments

                Comment on this article