276
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause “c9FTD/ALS” has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00401-013-1199-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The free radical theory of aging matures.

          The free radical theory of aging, conceived in 1956, has turned 40 and is rapidly attracting the interest of the mainstream of biological research. From its origins in radiation biology, through a decade or so of dormancy and two decades of steady phenomenological research, it has attracted an increasing number of scientists from an expanding circle of fields. During the past decade, several lines of evidence have convinced a number of scientists that oxidants play an important role in aging. (For the sake of simplicity, we use the term oxidant to refer to all "reactive oxygen species," including O2-., H2O2, and .OH, even though the former often acts as a reductant and produces oxidants indirectly.) The pace and scope of research in the last few years have been particularly impressive and diverse. The only disadvantage of the current intellectual ferment is the difficulty in digesting the literature. Therefore, we have systematically reviewed the status of the free radical theory, by categorizing the literature in terms of the various types of experiments that have been performed. These include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, the manipulation of metabolic activity and oxygen tension, treatment with dietary and pharmacological antioxidants, in vitro senescence, classical and population genetics, molecular genetics, transgenic organisms, the study of human diseases of aging, epidemiological studies, and the ongoing elucidation of the role of active oxygen in biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CpG islands in vertebrate genomes.

            Although vertebrate DNA is generally depleted in the dinucleotide CpG, it has recently been shown that some vertebrate genes contain CpG islands, regions of DNA with a high G+C content and a high frequency of CpG dinucleotides relative to the bulk genome. In this study, a large number of sequences of vertebrate genes were screened for the presence of CpG islands. Each CpG island was then analysed in terms of length, nucleotide composition, frequency of CpG dinucleotides, and location relative to the transcription unit of the associated gene. CpG islands were associated with the 5' ends of all housekeeping genes and many tissue-specific genes, and with the 3' ends of some tissue-specific genes. A few genes contained both 5' and 3' CpG islands, separated by several thousand base-pairs of CpG-depleted DNA. The 5' CpG islands extended through 5'-flanking DNA, exons and introns, whereas most of the 3' CpG islands appeared to be associated with exons. CpG islands were generally found in the same position relative to the transcription unit of equivalent genes in different species, with some notable exceptions. The locations of G/C boxes, composed of the sequence GGGCGG or its reverse complement CCGCCC, were investigated relative to the location of CpG islands. G/C boxes were found to be rare in CpG-depleted DNA and plentiful in CpG islands, where they occurred in 3' CpG islands, as well as in 5' CpG islands associated with tissue-specific and housekeeping genes. G/C boxes were located both upstream and downstream from the transcription start site of genes with 5' CpG islands. Thus, G/C boxes appeared to be a feature of CpG islands in general, rather than a feature of the promoter region of housekeeping genes. Two theories for the maintenance of a high frequency of CpG dinucleotides in CpG islands were tested: that CpG islands in methylated genomes are maintained, despite a tendency for 5mCpG to mutate by deamination to TpG+CpA, by the structural stability of a high G+C content alone, and that CpG islands associated with exons result from some selective importance of the arginine codon CGX. Neither of these theories could account for the distribution of CpG dinucleotides in the sequences analysed. Possible functions of CpG islands in transcriptional and post-transcriptional regulation of gene expression were discussed, and were related to theories for the maintenance of CpG islands as "methylation-free zones" in germline DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetics and aging: the targets and the marks.

              'Aging epigenetics' is an emerging field that promises exciting revelations in the near future. Here we focus on the functional and biological significance of the epigenetic alterations that accumulate during aging and are important in tumorigenesis. Paradigmatic examples are provided by the global loss of DNA methylation in aging and cancer and by the promoter hypermethylation of genes with a dual role in tumor suppression and progeria, such as the Werner syndrome (WRN) and lamin A/C genes. Another twist is provided by sirtuins, a family of NAD-dependent deacetylases that act on Lys16 of histone H4, which are emerging as a link between cellular transformation and lifespan.
                Bookmark

                Author and article information

                Contributors
                +1-904-9532855 , +1-904-9536276 , petrucelli.leonard@mayo.edu
                Journal
                Acta Neuropathol
                Acta Neuropathol
                Acta Neuropathologica
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0001-6322
                1432-0533
                29 October 2013
                29 October 2013
                2013
                : 126
                : 895-905
                Affiliations
                [ ]Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
                [ ]Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
                [ ]Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
                [ ]Department of Cancer Biology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
                Article
                1199
                10.1007/s00401-013-1199-1
                3830740
                24166615
                228aa0c1-d88a-4ac8-9f91-67588d73954a
                © The Author(s) 2013

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 1 July 2013
                : 16 October 2013
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2013

                Neurology
                amyotrophic lateral sclerosis,frontotemporal dementia,c9orf72,epigenetic modification,repeat expansion,histone methylation

                Comments

                Comment on this article