3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anaerobic fluidized bed membrane bioreactor for wastewater treatment.

      Environmental Science & Technology
      Anaerobiosis, Biological Oxygen Demand Analysis, Bioreactors, microbiology, Charcoal, Energy-Generating Resources, Methane, analysis, metabolism, Waste Disposal, Fluid, instrumentation, methods, Water Microbiology, Water Pollutants

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anaerobic membrane bioreactors have potential for energy-efficient treatment of domestic and other wastewaters, membrane fouling being a major hurdle to application. It was found that fouling can be controlled if membranes are placed directly in contact with the granular activated carbon (GAC) in an anaerobic fluidized bed bioreactor (AFMBR) used here for post-treatment of effluent from another anaerobic reactor treating dilute wastewater. A 120-d continuous-feed evaluation was conducted using this two-stage anaerobic treatment system operated at 35 °C and fed a synthetic wastewater with chemical oxygen demand (COD) averaging 513 mg/L. The first-stage was a similar fluidized-bed bioreactor without membranes (AFBR), operated at 2.0-2.8 h hydraulic retention time (HRT), and was followed by the above AFMBR, operating at 2.2 h HRT. Successful membrane cleaning was practiced twice. After the second cleaning and membrane flux set at 10 L/m(2)/h, transmembrane pressure increased linearly from 0.075 to only 0.1 bar during the final 40 d of operation. COD removals were 88% and 87% in the respective reactors and 99% overall, with permeate COD of 7 ± 4 mg/L. Total energy required for fluidization for both reactors combined was 0.058 kWh/m(3), which could be satisfied by using only 30% of the gaseous methane energy produced. That of the AFMBR alone was 0.028 kWh/m(3), which is significantly less than reported for other submerged membrane bioreactors with gas sparging for fouling control.

          Related collections

          Author and article information

          Comments

          Comment on this article