3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploiting tools for manipulating insect diapause

      Bulletin of Entomological Research
      Cambridge University Press (CUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tools that could be used to subvert the insect diapause response offer potential for insect pest management as well as for the experimental manipulation of insects and the facilitation of mass rearing procedures. In some cases, it is desirable to break diapause on demand and in other cases, it may be attractive to exploit diapause for long-term storage of biocontrol agents or valuable experimental lines. This review highlights some of the diapause disruptors reported in the literature, as well as chemical and physical manipulations that can be used to extend diapause or even induce diapause in an insect not programmed for diapause. The insect hormones are quite effective agents for breaking diapause and in some cases for extending the duration of diapause, but a collection of other chemical agents can also act as potent diapause disruptors, e.g. organic solvents, weak acids and bases, carbon dioxide, imidazole compounds, LSD, deuterium oxide, DMSO, ouabain, cholera toxin, cyclic GMP, heavy metals, and hydrogen peroxide. Physical manipulations such as artificial light at night, anoxia, shaking and heat shock are also known diapause disruptors. Some of these documented manipulations prevent diapause, others terminate diapause immediately, others alter the duration of diapause, and a few compounds can induce a diapause-like state in insects that are not programmed for diapause. The diversity of tools noted in the literature offers promise for the development of new tools or manipulations that possibly could be used to disrupt diapause or manage diapause in controlled laboratory experiments and in mass-rearing facilities.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Energetics of insect diapause.

          Managing metabolic resources is critical for insects during diapause when food sources are limited or unavailable. Insects accumulate reserves prior to diapause, and metabolic depression during diapause promotes reserve conservation. Sufficient reserves must be sequestered to both survive the diapause period and enable postdiapause development that may involve metabolically expensive functions such as metamorphosis or long-distance flight. Nutrient utilization during diapause is a dynamic process, and insects appear capable of sensing their energy reserves and using this information to regulate whether to enter diapause and how long to remain in diapause. Overwintering insects on a tight energy budget are likely to be especially vulnerable to increased temperatures associated with climate change. Molecular mechanisms involved in diapause nutrient regulation remain poorly known, but insulin signaling is likely a major player. We also discuss other possible candidates for diapause-associated nutrient regulation including adipokinetic hormone, neuropeptide F, the cGMP-kinase For, and AMPK.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of diapause.

            Environmental and hormonal regulators of diapause have been reasonably well defined, but our understanding of the molecular regulation of diapause remains in its infancy. Though many genes are shut down during diapause, others are specifically expressed at this time. Classes of diapause-upregulated genes can be distinguished based on their expression patterns: Some are upregulated throughout diapause, and others are expressed only in early diapause, late diapause, or intermittently throughout diapause. The termination of diapause is accompanied by a rapid decline in expression of the diapause-upregulated genes and, conversely, an elevation in expression of many genes that were downregulated during diapause. A comparison of insect diapause with other forms of dormancy in plants and animals suggests that upregulation of a subset of heat shock protein genes may be one feature common to different types of dormancies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eco-physiological phases of insect diapause.

              Insect diapause is a dynamic process consisting of several successive phases. The conception and naming of the phases is unsettled and, sometimes, ambiguous in the literature. In this paper, the ontogeny of diapause was reviewed and the most often used terms and the best substantiated phases were highlighted, explained and re-defined. The aim was to propose relatively simple and generally applicable terminological system. The phases of diapause induction, preparation, initiation, maintenance, termination and post-diapause quiescence were distinguished. The specific progression through diapause phases in each species, population (genotype), or even individual, is based on (thus far largely unknown) physiological processes, the actual expression of which is significantly modified by diverse environmental factors. Thus, such phases are eco-physiological in their nature.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Bulletin of Entomological Research
                Bull. Entomol. Res.
                Cambridge University Press (CUP)
                0007-4853
                1475-2670
                December 2022
                October 06 2022
                December 2022
                : 112
                : 6
                : 715-723
                Article
                10.1017/S000748532100016X
                23523c6a-4b4a-4a48-9b59-366c181b699a
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article