45
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phytantriol- and glycerol monooleate-based cubosomes were produced and characterized as a targeted and sustained transdermal delivery system for capsaicin. The cubosomes were prepared by emulsification and homogenization of phytantriol (F1), glycerol monooleate (F2), and poloxamer dispersions, characterized for morphology and particle size distribution by transmission electron microscope and photon correlation spectroscopy. Their Im3m crystallographic space group was confirmed by small-angle X-ray scattering. An in vitro release study showed that the cubosomes provided a sustained release system for capsaicin. An in vitro diffusion study conducted using Franz diffusion cells indicated that the skin retention of capsaicin from cubosomes in the stratum corneum was much higher (2.75±0.22 μg versus 4.32±0.13 μg, respectively) than that of capsaicin cream (0.72±0.13 μg). The stress testing showed that the cubosome formulations were stable under strong light and high temperature for up to 10 days. After multiapplications on mouse skin, the irritation of capsaicin cubosomes and cream was light with the least amount of side effects. Overall, the present study demonstrated that cubosomes may be a suitable skin-targeted and sustained delivery system for the transdermal administration of capsaicin.

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies.

          The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies--such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs--and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cubic phase gels as drug delivery systems.

            J. Shah (2001)
            Lipids have been used extensively for drug delivery in various forms such as liposomes, and solid-matrices. The focus of this review is evaluation of liquid crystalline cubic phases, spontaneously formed when amphiphilic lipids are placed in aqueous environment, for drug delivery. Cubic phases have an interesting thermodynamically stable structure consisting of curved bicontinuous lipid bilayer in three dimensions, separating two congruent networks of water channels. The unique structure of cubic phase has been extensively studied using various spectroscopic techniques and their resemblance to biomembranes has prompted many scientists to study behavior of proteins in cubic phases. The ability of cubic phase to incorporate and control release of drugs of varying size and polar characteristics, and biodegradability of lipids make it an interesting drug delivery system for various routes of administration. Cubic phases have been shown to deliver small molecule drugs and large proteins by oral and parenteral routes in addition to local delivery in vaginal and periodontal cavity. A number of different proteins in cubic phase appear to retain their native conformation and bioactivity, and are protected from chemical and physical inactivation perhaps due to the reduced activity of water and biomembrane-like structure of cubic phase. Release of drugs from cubic phase typically show diffusion controlled release from a matrix as indicated by Higuchi's square root of time release kinetics. Incorporation of drug in cubic phase can cause phase transformation to lamellar or reversed hexagonal phase depending on the polarity and concentration of the drug, which may affect the release profile. Biodegradability, phase behavior, ability to deliver drugs of varying sizes and polarity and the ability to enhance the chemical and/or physical stability of incorporated drugs and proteins make the cubic phase gel an excellent candidate for use as a drug delivery matrix. However, shorter release duration and the extremely high viscosity may limit its use to specific applications such as periodontal, mucosal, vaginal and short acting oral and parenteral drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability.

              Methods and compositions for producing lipid-based cubic phase nanoparticles were first discovered in the 1990s. Since then a number of studies have been presented, but little is known about how to control key properties such as particle size, morphology, and stability of cubic phase dispersions. In the present work we give examples of how these properties can be tuned by composition and processing conditions. Importantly we show that stable particle dispersions with consistent size and structure can be produced by a simple processing scheme comprising a homogenization and heat treatment step.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                03 August 2015
                : 9
                : 4209-4218
                Affiliations
                [1 ]Guangdong Medical University, Dongguan, People’s Republic of China
                [2 ]The Second Affiliated Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
                [3 ]School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, People’s Republic of China
                [4 ]Guangzhou Neworld Pharmaceuticals Co. Ltd., Guangzhou, Guangdong, People’s Republic of China
                Author notes
                Correspondence: Xin Pan; Chuanbin Wu, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, Guangdong, People’s Republic of China, Tel +86 20 3994 3117, Fax +86 20 3994 3115; +86 20 3994 3120, Email pxin_1385@ 123456163.com ; chuanbin_wu@ 123456126.com
                [*]

                These authors contributed equally to this work

                Article
                dddt-9-4209
                10.2147/DDDT.S86370
                4529266
                237abd1d-4fe5-42e2-a9b3-48de5ce13438
                © 2015 Peng et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                cubosomes,skin-targeted delivery,capsaicin
                Pharmacology & Pharmaceutical medicine
                cubosomes, skin-targeted delivery, capsaicin

                Comments

                Comment on this article