1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isomer-Resolved Mobility-Mass Analysis of α-Pinene Ozonolysis Products

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highly oxygenated organic molecules (HOMs) are important sources of atmospheric aerosols. Resolving the molecular-level formation mechanisms of these HOMs from freshly emitted hydrocarbons improves the understanding of aerosol properties and their influence on the climate. In this study, we measure the electrical mobility and mass-to-charge ratio of α-pinene oxidation products using a secondary electrospray-differential mobility analyzer-mass spectrometer (SESI-DMA-MS). The mass-mobility spectrum of the oxidation products is measured with seven different reagent ions generated by the electrospray. We analyzed the mobility-mass spectra of the oxidation products C 9–10H 14–18O 2–6. Our results show that acetate and chloride yield the highest charging efficiencies. Analysis of the mobility spectra suggests that the clusters have 1–5 isomeric structures (i.e., ion-molecule cluster structures with distinct mobilities), and the number is affected by the reagent ion. Most of the isomers are likely cluster isomers originating from binding of the reagent ion to different sites of the molecule. By comparing the number of observed isomers and measured mobilities and collision cross sections between standard pinanediol and pinonic acid to the values observed for C 10H 18O 2 and C 10H 16O 3 produced from oxidation of α-pinene, we confirm that pinanediol and pinonic acid are the only isomers for these elemental compositions in our experimental conditions. Our study shows that the SESI-DMA-MS produces new information from the first steps of oxidation of α-pinene.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The role of low-volatility organic compounds in initial particle growth in the atmosphere

          The growth of nucleated organic particles has been investigated in controlled laboratory experiments under atmospheric conditions; initial growth is driven by organic vapours of extremely low volatility, and accelerated by more abundant vapours of slightly higher volatility, leading to markedly different modelled concentrations of atmospheric cloud condensation nuclei when this growth mechanism is taken into account. Supplementary information The online version of this article (doi:10.1038/nature18271) contains supplementary material, which is available to authorized users. The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s Nature point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby et al . show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl et al . examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility. Supplementary information The online version of this article (doi:10.1038/nature18271) contains supplementary material, which is available to authorized users. About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday 1 . Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres 2 , 3 . In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles 4 , thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth 5 , 6 , leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer 7 , 8 , 9 , 10 . Although recent studies 11 , 12 , 13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon 2 , and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory) 2 , 14 , has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown 15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10 −4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10 −4.5 to 10 −0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations. Supplementary information The online version of this article (doi:10.1038/nature18271) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A large source of low-volatility secondary organic aerosol.

            Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Atmospheric degradation of volatile organic compounds.

                Bookmark

                Author and article information

                Journal
                J Phys Chem A
                J Phys Chem A
                jx
                jpcafh
                The Journal of Physical Chemistry. a
                American Chemical Society
                1089-5639
                1520-5215
                21 July 2022
                04 August 2022
                : 126
                : 30
                : 5040-5049
                Affiliations
                []Institute for Atmospheric and Earth System Research/Physics, University of Helsinki , FI-00014 Helsinki, Finland
                []College of Environmental and Resource Sciences, Zhejiang University , Hangzhou, 310058, China
                [§ ]Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki , 00014 Helsinki, Finland
                []Aerosol Physics Laboratory, Department of Physics, Tampere University , 33720 Tampere, Finland
                []Karsa Ltd. , A. I. Virtasen aukio 1, 00560 Helsinki, Finland
                Author notes
                Author information
                https://orcid.org/0000-0002-0215-4893
                https://orcid.org/0000-0002-2534-6898
                https://orcid.org/0000-0002-6416-4931
                https://orcid.org/0000-0003-0463-8098
                https://orcid.org/0000-0002-1639-1187
                Article
                10.1021/acs.jpca.2c03366
                9358649
                35862553
                23d1c13a-87fc-4e71-a9be-b3a39a182251
                © 2022 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 14 May 2022
                : 06 July 2022
                Funding
                Funded by: Helsingin Yliopisto, doi 10.13039/100007797;
                Award ID: 75284132
                Funded by: Academy of Finland, doi 10.13039/501100002341;
                Award ID: 346370
                Funded by: Academy of Finland, doi 10.13039/501100002341;
                Award ID: 1325656
                Funded by: H2020 European Research Council, doi 10.13039/100010663;
                Award ID: 101002728
                Categories
                Article
                Custom metadata
                jp2c03366
                jp2c03366

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article