14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microglial Phagocytosis of Neurons: Diminishing Neuronal Loss in Traumatic, Infectious, Inflammatory, and Autoimmune CNS Disorders

      research-article
      Frontiers in Psychiatry
      Frontiers Media S.A.
      depression, microglia, neuron, autoimmunity, inflammation, traumatic brain injury, cytokine, excitotoxicity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Errors in neuron-microglial interaction are known to lead to microglial phagocytosis of live neurons and excessive neuronal loss, potentially yielding poorer clinical outcomes. Factors that affect neuron-microglial interaction have the potential to influence the error rate. Clinical comorbidities that unfavorably impact neuron-microglial interaction may promote a higher rate of neuronal loss, to the detriment of patient outcome. This paper proposes that many common, clinically modifiable comorbidities have a common thread, in that they all influence neuron-microglial interactions. Comorbidities like traumatic brain injury, infection, stress, neuroinflammation, loss of neuronal metabolic integrity, poor growth factor status, and other factors, all have the potential to alter communication between neurons and microglia. When this occurs, microglial phagocytosis of live neurons can increase. In addition, microglia can shift into a morphological form in which they express major histocompatibility complex II (MHC-II), allowing them to function as antigen presenting cells that present neuronal debris as antigen to invading T cells. This can increase risk for the development of CNS autoimmunity, or can exacerbate existing CNS autoimmunity. The detrimental influence of these comorbidities has the potential to contribute to the mosaic of factors that determine patient outcome in some CNS pathologies that have neuropsychiatric involvement, including TBI and CNS disorders with autoimmune components, where excessive neuronal loss can yield poorer clinical outcomes. Recognition of the impact of these comorbidities may contribute to an understanding of the common clinical observation that many seemingly disparate factors contribute to the overall picture of case management and clinical outcome in these complex disorders. In a clinical setting, knowing how these comorbidities can influence neuron-microglial interaction can help focus surveillance and care on a broader group of potential therapeutic targets. Accordingly, an interest in the mechanisms underlying the influence of these factors on neuron-microglial interactions is appropriate. Neuron-microglial interaction is reviewed, and the various mechanisms by which these potential comorbidities influence neuro-microglial interaction are described.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.

          In multiple sclerosis and the experimental autoimmune encephalitis (EAE) mouse model, two pools of morphologically indistinguishable phagocytic cells, microglia and inflammatory macrophages, accrue from proliferating resident precursors and recruitment of blood-borne progenitors, respectively. Whether these cell types are functionally equivalent is hotly debated, but is challenging to address experimentally. Using a combination of parabiosis and myeloablation to replace circulating progenitors without affecting CNS-resident microglia, we found a strong correlation between monocyte infiltration and progression to the paralytic stage of EAE. Inhibition of chemokine receptor-dependent recruitment of monocytes to the CNS blocked EAE progression, suggesting that these infiltrating cells are essential for pathogenesis. Finally, we found that, although microglia can enter the cell cycle and return to quiescence following remission, recruited monocytes vanish, and therefore do not ultimately contribute to the resident microglial pool. In conclusion, we identified two distinct subsets of myelomonocytic cells with distinct roles in neuroinflammation and disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk.

            We propose a model wherein chronic stress results in glucocorticoid receptor resistance (GCR) that, in turn, results in failure to down-regulate inflammatory response. Here we test the model in two viral-challenge studies. In study 1, we assessed stressful life events, GCR, and control variables including baseline antibody to the challenge virus, age, body mass index (BMI), season, race, sex, education, and virus type in 276 healthy adult volunteers. The volunteers were subsequently quarantined, exposed to one of two rhinoviruses, and followed for 5 d with nasal washes for viral isolation and assessment of signs/symptoms of a common cold. In study 2, we assessed the same control variables and GCR in 79 subjects who were subsequently exposed to a rhinovirus and monitored at baseline and for 5 d after viral challenge for the production of local (in nasal secretions) proinflammatory cytokines (IL-1β, TNF-α, and IL-6). Study 1: After covarying the control variables, those with recent exposure to a long-term threatening stressful experience demonstrated GCR; and those with GCR were at higher risk of subsequently developing a cold. Study 2: With the same controls used in study 1, greater GCR predicted the production of more local proinflammatory cytokines among infected subjects. These data provide support for a model suggesting that prolonged stressors result in GCR, which, in turn, interferes with appropriate regulation of inflammation. Because inflammation plays an important role in the onset and progression of a wide range of diseases, this model may have broad implications for understanding the role of stress in health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systemic infections and inflammation affect chronic neurodegeneration.

              It is well known that systemic infections cause flare-ups of disease in individuals with asthma and rheumatoid arthritis, and that relapses in multiple sclerosis can often be associated with upper respiratory-tract infections. Here we review evidence to support our hypothesis that in chronic neurodegenerative diseases such as Alzheimer's disease, with an ongoing innate immune response in the brain, systemic infections and inflammation can cause acute exacerbations of symptoms and drive the progression of neurodegeneration.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                03 October 2019
                2019
                : 10
                : 712
                Affiliations
                [1]Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine , Chapel Hill, NC, United States
                Author notes

                Edited by: Richard Eugene Frye, Phoenix Children’s Hospital, United States

                Reviewed by: Madeleine W. Cunningham, University of Oklahoma Health Sciences Center, United States; Roger H. Kobayashi, UCLA David Geffen School of Medicine, United States

                *Correspondence: Samuel F. Yanuck, syanuck@ 123456yanuckcenter.com

                This article was submitted to Molecular Psychiatry, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2019.00712
                6786049
                31632307
                242fb5bd-7dbe-467b-aa78-44b837912274
                Copyright © 2019 Yanuck

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 June 2019
                : 05 September 2019
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 196, Pages: 18, Words: 9578
                Categories
                Psychiatry
                Hypothesis and Theory

                Clinical Psychology & Psychiatry
                depression,microglia,neuron,autoimmunity,inflammation,traumatic brain injury,cytokine,excitotoxicity

                Comments

                Comment on this article