8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of hydrogen sulfide on inducible nitric oxide synthase activity and expression of cardiomyocytes in diabetic rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to investigate the effects of hydrogen sulfide (H 2S) on the activity and expression of inducible nitric oxide synthase (iNOS) in the myocardial tissue of type 1 diabetic rats. Rats were divided randomly into four groups: Normal control (NC), diabetes mellitus (DM), DM+DL-Proparglygylcine (DM+PAG) and DM+sodium hydrosulfide (DM+NaHS) groups. Type 1 diabetes was induced in the respective groups by a single intraperitoneal (i.p.) injection of streptozotocin. Rats in the DM+PAG and DM+NaHS groups were injected with PAG and NaHS (i.p.) once a day, respectively. The level of fasting blood glucose (FBG), the heart-weight to body-weight (HW/BW) ratio and the ventricular hemodynamic parameters were measured. The activities of serum total NOS (tNOS), iNOS, lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase MB isozyme (CK-MB), and the content of nitric oxide (NO) were detected. The contents of myocardial malondialdehyde (MDA) and NO, and the activities of superoxide dismutase (SOD), tNOS and iNOS were determined. The myocardial tissue was examined for histological and ultrastructural alterations. The expression level of iNOS at the transcriptional and translational levels in the myocardial tissue was estimated. The level of FBG was increased in the DM group compared with the NC group, verifying the diabetic condition of the rats. The function of the left ventricle, the myocardial histological alterations and ultrastructures were damaged in the DM group. The DM group additionally demonstrated an increase in the serum NO content and tNOS, iNOS, LDH, CK and CK-MB activities. The myocardial MDA, NO content and tNOS levels were additionally increased in this group. The iNOS activity was increased significantly whereas the myocardial SOD activity was decreased. The increase in the iNOS activity was supported by an enhanced expression level of myocardial iNOS mRNA and protein in the DM group. In the DM+PAG group, in the absence of H 2S, the dysfunction of the left ventricle and the oxidative stress injury were increased compared with the DM group. The activity and the expression of tNOS and iNOS were increased significantly. However, the rats in the DM+PAG group demonstrated the opposite effects. In conclusion, H 2S exhibits a protective effect on the myocardium in type 1 diabetic rats, which may be associated with the suppression of iNOS activity and expression, a decrease in the NO content and the inhibition of oxidative stress injury.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment.

          Diabetes mellitus is an important and prevalent risk factor for congestive heart failure. Diabetic cardiomyopathy has been defined as ventricular dysfunction that occurs in diabetic patients independent of a recognized cause such as coronary artery disease or hypertension. The disease course consists of a hidden subclinical period, during which cellular structural insults and abnormalities lead initially to diastolic dysfunction, later to systolic dysfunction, and eventually to heart failure. Left ventricular hypertrophy, metabolic abnormalities, extracellular matrix changes, small vessel disease, cardiac autonomic neuropathy, insulin resistance, oxidative stress, and apoptosis are the most important contributors to diabetic cardiomyopathy onset and progression. Hyperglycemia is a major etiological factor in the development of diabetic cardiomyopathy. It increases the levels of free fatty acids and growth factors and causes abnormalities in substrate supply and utilization, calcium homeostasis, and lipid metabolism. Furthermore, it promotes excessive production and release of reactive oxygen species, which induces oxidative stress leading to abnormal gene expression, faulty signal transduction, and cardiomyocytes apoptosis. Stimulation of connective tissue growth factor, fibrosis, and the formation of advanced glycation end-products increase the stiffness of the diabetic hearts. Despite all the current information on diabetic cardiomyopathy, translational research is still scarce due to limited human myocardial tissue and most of our knowledge is extrapolated from animals. This paper aims to elucidate some of the molecular and cellular pathophysiologic mechanisms, structural changes, and therapeutic strategies that may help struggle against diabetic cardiomyopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising.

            Hydrogen sulfide is rapidly gaining ground as a physiological mediator of inflammation, but there is no clear consensus as to its precise role in inflammatory signaling. This article discusses the disparate anti-inflammatory ('the good') and proinflammatory ('the bad') effects of endogenous and pharmacological H(2)S in disparate animal model and cell culture systems. We also discuss 'the ugly', such as problems of using wholly specific inhibitors of enzymatic H(2)S synthesis, and the use of pharmacological donor compounds, which release H(2)S too quickly to be physiologically representative of endogenous H(2)S synthesis. Furthermore, recently developed slow-release H(2)S donors, which offer a more physiological approach to understanding the complex role of H(2)S in acute and chronic inflammation ('the promising') are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat.

              GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) is a slow-releasing hydrogen sulfide (H(2)S) donor. Administration of GYY4137 (50 mg/kg, iv) to anesthetized rats 10 min after lipopolysaccharide (LPS; 4 mg/kg, iv) decreased the slowly developing hypotension. GYY4137 inhibited LPS-induced TNF-alpha production in rat blood and reduced the LPS-evoked rise in NF-kappaB activation, inducible nitric oxide synthase/cyclooxygenase-2 expression, and generation of PGE(2) and nitrate/nitrite in RAW 264.7 macrophages. GYY4137 (50 mg/kg, ip) administered to conscious rats 1 or 2 h after (but not 1 h before) LPS decreased the subsequent (4 h) rise in plasma proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6), nitrite/nitrate, C-reactive protein, and L-selectin. GYY4137 administration also decreased the LPS-evoked increase in lung myeloperoxidase activity, increased plasma concentration of the anti-inflammatory cytokine IL-10, and decreased tissue damage as determined histologically and by measurement of plasma creatinine and alanine aminotransferase activity. Time-expired GYY4137 (50 mg/kg, ip) did not affect the LPS-induced rise in plasma TNF-alpha or lung myeloperoxidase activity. GYY4137 also decreased the LPS-mediated upregulation of liver transcription factors (NF-kappaB and STAT-3). These results suggest an anti-inflammatory effect of GYY4137. The possibility that GYY4137 and other slow-releasing H(2)S donors exert anti-inflammatory activity in other models of inflammation and in humans warrants further study.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                October 2017
                14 August 2017
                14 August 2017
                : 16
                : 4
                : 5277-5284
                Affiliations
                [1 ]Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
                [2 ]Center of Functional Experiment, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
                Author notes
                Correspondence to: Dr Shan-Feng Ma, Department of Physiology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, Anhui 233030, P.R. China, E-mail: msfbio@ 123456163.com
                [*]

                Contributed equally

                Article
                mmr-16-04-5277
                10.3892/mmr.2017.7247
                5647082
                28849194
                244be9bd-9644-4261-a7af-bf1da93d2710
                Copyright: © Yang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 05 March 2017
                : 08 August 2017
                Categories
                Articles

                diabetes mellitus,hydrogen sulfide,rat,myocardium,nitric oxide,inducible nitric oxide synthase

                Comments

                Comment on this article