16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection

      research-article
      , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.

          Author Summary

          Epstein-Barr virus (EBV) is an important human pathogen that is carried as a latent infection of B cells by most adults worldwide. Infection of epithelial cells is also believed to be important in the normal life-cycle of EBV, and is certainly associated with the pathogenesis of some epithelial tumours. Whilst EBV binds to and infects B cells that express CD21, a receptor for the gp350 viral glycoprotein, binding of EBV to CD21-negative epithelial cells is inefficient. However, we have identified an efficient process of ‘transfer infection’. This process involves EBV first binding to B cells, resulting in CD21-mediated capping of virus and activation of adhesion molecules, which facilitates conjugate formation between B cells and epithelial cells and the subsequent entry of EBV into epithelial cells. We have characterised the molecular processes involved in transfer infection, both in unpolarized cells modelling pre-malignant epithelial cells, and in normal polarized epithelial cells. The details of the molecular interactions in these infection models led us to identify a subset of B cells, memory B cells, as being the primary vehicles for transfer infection. The results reinforce the likely physiological significance of transfer infection of epithelial cells in healthy persistence and in EBV pathogenesis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Tight junctions and cell polarity.

          The tight junction is an intracellular junctional structure that mediates adhesion between epithelial cells and is required for epithelial cell function. Tight junctions control paracellular permeability across epithelial cell sheets and also serve as a barrier to intramembrane diffusion of components between a cell's apical and basolateral membrane domains. Recent genetic and biochemical studies in invertebrates and vertebrates indicate that tight junction proteins play an important role in the establishment and maintenance of apico-basal polarity. Proteins involved in epithelial cell polarization form evolutionarily conserved multiprotein complexes at the tight junction, and these protein complexes regulate the architecture of epithelia throughout the polarization process. Accumulating information regarding the regulation of these polarity proteins will lead to a better understanding of the molecular mechanisms whereby cell polarity is established.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells.

            With current techniques, genetic alterations of herpesviruses are difficult to perform, mostly because of the large size of their genomes. To solve this problem, we have designed a system that allows the cloning of any gamma-herpesvirus in Escherichia coli onto an F factor-derived plasmid. Immortalized B cell lines were readily established with recombinant Epstein-Barr virus (EBV), demonstrating that the F factor-cloned EBV genome has all the characteristics of wild-type EBV. Because any genetic modification is possible in E. coli, this experimental approach opens the way to the genetic analysis of all EBV functions. Moreover, it is now feasible to generate attenuated EBV strains in vitro such that vaccine strains can be designed. Because we incorporated the genes for hygromycin resistance and green fluorescent protein onto the E. coli cloned EBV genome, the still open question of the EBV target cells other than B lymphocytes will be addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epstein-Barr virus and virus human protein interaction maps.

              A comprehensive mapping of interactions among Epstein-Barr virus (EBV) proteins and interactions of EBV proteins with human proteins should provide specific hypotheses and a broad perspective on EBV strategies for replication and persistence. Interactions of EBV proteins with each other and with human proteins were assessed by using a stringent high-throughput yeast two-hybrid system. Overall, 43 interactions between EBV proteins and 173 interactions between EBV and human proteins were identified. EBV-EBV and EBV-human protein interaction, or "interactome" maps provided a framework for hypotheses of protein function. For example, LF2, an EBV protein of unknown function interacted with the EBV immediate early R transactivator (Rta) and was found to inhibit Rta transactivation. From a broader perspective, EBV genes can be divided into two evolutionary classes, "core" genes, which are conserved across all herpesviruses and subfamily specific, or "noncore" genes. Our EBV-EBV interactome map is enriched for interactions among proteins in the same evolutionary class. Furthermore, human proteins targeted by EBV proteins were enriched for highly connected or "hub" proteins and for proteins with relatively short paths to all other proteins in the human interactome network. Targeting of hubs might be an efficient mechanism for EBV reorganization of cellular processes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2011
                May 2011
                5 May 2011
                : 7
                : 5
                : e1001338
                Affiliations
                [1]Cancer Research UK Birmingham Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
                University of Wisconsin-Madison, United States of America
                Author notes

                Conceived and designed the experiments: CSL MR. Performed the experiments: CSL. Analyzed the data: CSL MR. Contributed reagents/materials/analysis tools: CSL. Wrote the paper: CSL MR.

                Article
                10-PLPA-RA-4075R2
                10.1371/journal.ppat.1001338
                3088705
                21573183
                248fe241-d147-4599-ae80-de7867008fb5
                Shannon-Lowe, Rowe. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 August 2010
                : 6 April 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Virology/Host Invasion and Cell Entry
                Virology/Viruses and Cancer

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article