14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Propranolol inhibits the proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to investigate the mechanism of propranolol on the regression of hemangiomas. Propranolol-treated hemangioma tissues were collected and the expression of hypoxia inducible factor-1α (HIF-1α) was examined. We also established HIF-1α overexpression and knockdown hemangioma cells, and determined the effects of HIF-1α on the hemangioma cells proliferation, apoptosis, migration and tube formation. Significantly increased HIF-1α level was found in the hemangioma tissues compared to that in normal vascular tissues, whereas propranolol treatment decreased the HIF-1α level in hemangioma tissues in a time- and dose-dependent manner. Moreover, propranolol treatment significantly decreased cell proliferation, migration and tube formation as well as promoted cell apoptosis in HIF-1α overexpression and knockdown hemangioma cells. Propranolol suppressed the cells proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms. HIF-1α could serve as a novel target in the treatment of hemangiomas.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha.

          Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1.

            Understanding molecular mechanisms regulating angiogenesis may lead to novel therapies for ischemic disorders. Hypoxia-inducible factor 1 (HIF-1) activates vascular endothelial growth factor (VEGF) gene expression in hypoxic/ischemic tissue. In this study we demonstrate that exposure of primary cultures of cardiac and vascular cells to hypoxia or AdCA5, an adenovirus encoding a constitutively active form of HIF-1alpha, modulates the expression of genes encoding the angiogenic factors angiopoietin-1 (ANGPT1), ANGPT2, placental growth factor, and platelet-derived growth factor-B. Loss-of-function effects were also observed in HIF-1alpha-null embryonic stem cells. Depending on the cell type, expression of ANGPT1 and ANGPT2 was either activated or repressed in response to hypoxia or AdCA5. In all cases, there was complete concordance between the effects of hypoxia and AdCA5. Injection of AdCA5 into mouse eyes induced neovascularization in multiple capillary beds, including those not responsive to VEGF alone. Analysis of gene expression revealed increased expression of ANGPT1, ANGPT2, platelet-derived growth factor-B, placental growth factor, and VEGF mRNA in AdCA5-injected eyes. These results indicate that HIF-1 functions as a master regulator of angiogenesis by controlling the expression of multiple angiogenic growth factors and that adenovirus-mediated expression of a constitutively active form of HIF-1alpha is sufficient to induce angiogenesis in nonischemic tissue of an adult animal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action.

              Infantile haemangiomas (IH) are the most common benign tumours of infancy. Although most IH are innocuous and 85-90% regress spontaneously, some may become life- or function-threatening and require immediate treatment. Previous standard therapeutic options include physical measures (laser surgery, cryosurgery) and systemic corticosteroids, in severe cases also vincristine, alpha-interferon or cyclophosphamide, all bearing the risk of serious side-effects. Oral propranolol is a very recent therapeutic option for complicated IH with impressive efficacy and generally good tolerance. The effects of propranolol on IH were discovered by chance, and very little is known about its mechanisms of action in IH. Here we present a summary of current knowledge of how propranolol interferes with endothelial cells, vascular tone, angiogenesis and apoptosis. Early, intermediate and long-term effects of propranolol on IH can be attributed to three different pharmacological targets. Early effects (brightening of the haemangioma surface within 1-3 days after start of therapy) are attributable to vasoconstriction due to decreased release of nitric oxide. Intermediate effects are due to the blocking of proangiogenic signals (vascular endothelial growth factor, basic fibroblast growth factor, matrix metalloproteinase 2/9) and result in growth arrest. Long-term effects of propranolol are characterized by induction of apoptosis in proliferating endothelial cells, and result in tumour regression.
                Bookmark

                Author and article information

                Journal
                Braz J Med Biol Res
                Braz. J. Med. Biol. Res
                bjmbr
                Brazilian Journal of Medical and Biological Research
                Associação Brasileira de Divulgação Científica
                0100-879X
                1414-431X
                2 October 2017
                2017
                : 50
                : 12
                : e6138
                Affiliations
                [1 ]Department of Aesthetic, Plastic, and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
                [2 ]Department of Aesthetic, Plastic, and Burn Surgery, Linyi People's Hospital, Linyi, Shandong, China
                Author notes
                Correspondence: R. Huo: huorr10@ 123456tom.com
                Article
                00601
                10.1590/1414-431X20176138
                5625545
                28977119
                24a1a6a1-e2d9-40e4-9f1a-cab9f44c52c5

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 March 2017
                : 15 August 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 22, Pages: 1
                Categories
                Research Articles

                propranolol,hemangiomas,hypoxia inducible factor-1α,knockdown,regression

                Comments

                Comment on this article