5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      miR‑155, miR‑96 and miR‑99a as potential diagnostic and prognostic tools for the clinical management of hepatocellular carcinoma

      1 , 1 , 1 , 1 , 1 , 1 , 1
      Oncology Letters
      Spandidos Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8145779e161">Increasing evidence has demonstrated that circulating microRNAs (miRNAs) can be utilized as potential biomarkers for the diagnosis of cancer, as well as a prognostic tool for the management of the disease. Therefore, the present study aimed to evaluate the predictive ability of miRNA (miR)-155, miR-96 and miR-99a for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Tissues were collected from 30 patients with HCC and their matched adjacent normal liver tissues, as well as from serum samples from 30 patients with HCC and 30 healthy controls. Reverse transcription-quantitative PCR was used to measure the expression levels of miR-155, miR-96 and miR-99a. The expression levels of miR-155 and miR-96 were upregulated in the tissues and serum of patients with HCC, whereas miR-99a expression levels were decreased. Receiver operating characteristics (ROC) curve analysis revealed that circulating miR-155, miR-96, miR-99a and a combination of these three miRNAs could serve as diagnostic biomarkers for HCC with areas under the curve (AUC) of 0.84, 0.824, 0.799 and 0.931, respectively. Serum α-fetoprotein (AFP) was detected using electrochemiluminescence immunoassay analyzer. The addition of AFP with the combination of these three miRNAs offered a higher accuracy of HCC diagnosis (AUC, 0.979; sensitivity, 90.0%; specificity, 100.0%). In addition, elevated expression levels of miR-155 and miR-96 were associated with poor survival time of patients with HCC. The panel of miR-155, miR-96, miR-99a and AFP had a higher sensitivity and specificity for the diagnosis of HCC when compared with a single marker. Furthermore, the present data suggested that miR-155 and miR-96 may be potential prognostic markers for the clinical management of patients with HCC. </p>

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global cancer statistics, 2012.

            Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating microRNAs as stable blood-based markers for cancer detection.

              Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small ( approximately 22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumor-derived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.
                Bookmark

                Author and article information

                Journal
                Oncology Letters
                Oncol Lett
                Spandidos Publications
                1792-1074
                1792-1082
                July 11 2019
                July 11 2019
                Affiliations
                [1 ]Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
                Article
                10.3892/ol.2019.10606
                6676662
                31452818
                24afeedc-2db7-4561-b604-e4c239bda7c8
                © 2019
                History

                Comments

                Comment on this article