4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Consumer's transition to online clothing buying during the COVID-19 pandemic: exploration through protection motivation theory and consumer well-being

      ,
      Journal of Fashion Marketing and Management: An International Journal
      Emerald

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          By drawing on protection motivation theory, this study explores consumers' motivation to engage in adaptive behaviour envisioned through a transition from offline to online clothing purchasing during the COVID-19 pandemic. Additionally, this paper explores the conditioning effects of consumer resilience and satisfaction with retailers' assistive intent through the consumer well-being framework.

          Design/methodology/approach

          A total of 363 useable surveys were obtained from Croatian consumers. Data were analysed with confirmatory factor analysis and structural equation modelling.

          Findings

          Coping appraisal positively impacts adaptive behaviour by increasing online clothing purchase intention, while threat appraisal has no direct effect on adaptive behaviour. The relationship between threat appraisal and adaptive behaviour is negatively moderated by consumer resilience and satisfaction with the retailer's assistive intent.

          Research limitations/implications

          Limitations include the convenience sampling method and data collection at one point as well as the focus on consumers from one country.

          Practical implications

          This study provides a blueprint for designing marketing actions that retail managers should consider to respond to a crisis effectively while maintaining satisfactory buying experiences during health crises and other challenging events.

          Originality/value

          Given the unique research context, i.e. the COVID-19 pandemic, this study is one of the few and the first in Croatia to unfold the importance of protection motivation theory in providing a greater understanding of consumer's adaptive behaviour (transition from offline to online) in online clothing retail channels during the period of the global health-related crisis. Benefits from understanding consumers' coping and threat appraisal mechanisms while addressing their buying needs in adverse circumstances are revealed. In addition, the theoretical implications regarding the conditional effects of consumer resilience and consumer satisfaction with retailers' assistive intent during a pandemic are also provided.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: not found
          • Article: not found

          Evaluating Structural Equation Models with Unobservable Variables and Measurement Error

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a new resilience scale: the Connor-Davidson Resilience Scale (CD-RISC).

              Resilience may be viewed as a measure of stress coping ability and, as such, could be an important target of treatment in anxiety, depression, and stress reactions. We describe a new rating scale to assess resilience. The Connor-Davidson Resilience scale (CD-RISC) comprises of 25 items, each rated on a 5-point scale (0-4), with higher scores reflecting greater resilience. The scale was administered to subjects in the following groups: community sample, primary care outpatients, general psychiatric outpatients, clinical trial of generalized anxiety disorder, and two clinical trials of PTSD. The reliability, validity, and factor analytic structure of the scale were evaluated, and reference scores for study samples were calculated. Sensitivity to treatment effects was examined in subjects from the PTSD clinical trials. The scale demonstrated good psychometric properties and factor analysis yielded five factors. A repeated measures ANOVA showed that an increase in CD-RISC score was associated with greater improvement during treatment. Improvement in CD-RISC score was noted in proportion to overall clinical global improvement, with greatest increase noted in subjects with the highest global improvement and deterioration in CD-RISC score in those with minimal or no global improvement. The CD-RISC has sound psychometric properties and distinguishes between those with greater and lesser resilience. The scale demonstrates that resilience is modifiable and can improve with treatment, with greater improvement corresponding to higher levels of global improvement. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Fashion Marketing and Management: An International Journal
                JFMM
                Emerald
                1361-2026
                January 07 2022
                January 25 2023
                January 07 2022
                January 25 2023
                : 27
                : 1
                : 21-41
                Article
                10.1108/JFMM-04-2021-0105
                24e02e65-8a85-49e5-86f2-a74a202f1066
                © 2023

                https://www.emerald.com/insight/site-policies

                History

                Comments

                Comment on this article