23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cartilage-Specific Knockout of the Mechanosensory Ion Channel TRPV4 Decreases Age-Related Osteoarthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is a progressive degenerative disease of articular cartilage and surrounding tissues, and is associated with both advanced age and joint injury. Biomechanical factors play a critical role in the onset and progression of OA, yet the mechanisms through which physiologic or pathologic mechanical signals are transduced into a cellular response are not well understood. Defining the role of mechanosensory pathways in cartilage during OA pathogenesis may yield novel strategies or targets for the treatment of OA. The transient receptor potential vanilloid 4 (TRPV4) ion channel transduces mechanical loading of articular cartilage via the generation of intracellular calcium ion transients. Using tissue-specific, inducible Trpv4 gene-targeted mice, we demonstrate that loss of TRPV4-mediated cartilage mechanotransduction in adulthood reduces the severity of aging-associated OA. However, loss of chondrocyte TRPV4 did not prevent OA development following destabilization of the medial meniscus (DMM). These results highlight potentially distinct roles of TRPV4-mediated cartilage mechanotransduction in age-related and post-traumatic OA, and point to a novel disease-modifying strategy to therapeutically target the TRPV4-mediated mechanotransduction pathway for the treatment of aging-associated OA.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical factors in osteoarthritis.

          Biomechanical factors play an important role in the health of diarthrodial joints. Altered joint loading - associated to obesity, malalignment, trauma or joint instability - is a critical risk factor for joint degeneration, whereas exercise and weight loss have generally been shown to promote beneficial effects for osteoarthritic joints. The mechanisms by which mechanical stress alters the physiology or pathophysiology of articular cartilage or other joint tissues likely involve complex interactions with genetic and molecular influences, particularly local or systemic inflammation secondary to injury or obesity. Chondrocytes perceive physical signals from their environment using a variety of mechanisms, including ion channels, integrin-mediated connections to the extracellular matrix that involve membrane, cytoskeletal and intracellular deformation. An improved understanding of the biophysical and molecular pathways involved in chondrocyte mechanotransduction can provide insight into the development of novel therapeutic approaches for osteoarthritis. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage.

            Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading.

              Mechanical loading of joints plays a critical role in maintaining the health and function of articular cartilage. The mechanism(s) of chondrocyte mechanotransduction are not fully understood, but could provide important insights into new physical or pharmacologic therapies for joint diseases. Transient receptor potential vanilloid 4 (TRPV4), a Ca(2+)-permeable osmomechano-TRP channel, is highly expressed in articular chondrocytes, and loss of TRPV4 function is associated with joint arthropathy and osteoarthritis. The goal of this study was to examine the hypothesis that TRPV4 transduces dynamic compressive loading in articular chondrocytes. We first confirmed the presence of physically induced, TRPV4-dependent intracellular Ca(2+) signaling in agarose-embedded chondrocytes, and then used this model system to study the role of TRPV4 in regulating the response of chondrocytes to dynamic compression. Inhibition of TRPV4 during dynamic loading prevented acute, mechanically mediated regulation of proanabolic and anticatabolic genes, and furthermore, blocked the loading-induced enhancement of matrix accumulation and mechanical properties. Furthermore, chemical activation of TRPV4 by the agonist GSK1016790A in the absence of mechanical loading similarly enhanced anabolic and suppressed catabolic gene expression, and potently increased matrix biosynthesis and construct mechanical properties. These findings support the hypothesis that TRPV4-mediated Ca(2+) signaling plays a central role in the transduction of mechanical signals to support cartilage extracellular matrix maintenance and joint health. Moreover, these insights raise the possibility of therapeutically targeting TRPV4-mediated mechanotransduction for the treatment of diseases such as osteoarthritis, as well as to enhance matrix formation and functional properties of tissue-engineered cartilage as an alternative to bioreactor-based mechanical stimulation.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 July 2016
                2016
                : 6
                : 29053
                Affiliations
                [1 ]Department of Pathology & Immunology, Washington University in St. Louis , Missouri, 63110, USA
                [2 ]UNC/NCSU Joint Department of Biomedical Engineering, UNC School of Medicine , Chapel Hill, NC 27599, USA
                [3 ]Department of Orthopaedic Surgery, Duke University Medical Center , Durham NC 27710, USA
                [4 ]Department of Orthopaedic Surgery, Washington University in St. Louis , Missouri, 63110, USA
                [5 ]Shriners Hospitals for Children – St. Louis , St. Louis, Missouri 63110, USA
                [6 ]Department of Biochemistry, Rush University , Chicago, IL, 60612, USA
                [7 ]Department of Neurology and Neurobiology, Duke University Medical Center , Durham NC 27710, USA
                Author notes
                Article
                srep29053
                10.1038/srep29053
                4937413
                27388701
                254ec495-df3e-494d-abff-1eea3132a794
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 05 March 2016
                : 14 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article