12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Continuous Erythropoietin Receptor Activator in Sepsis-Induced Acute Kidney Injury and Multi-Organ Dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI.

          Methods

          Rats were randomized into three groups: control; CLP; and CLP+CERA (5 µg/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting—to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-κB)—and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1β, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection.

          Results

          Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-κB was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats.

          Conclusion

          CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.

          The marginal effects of acute kidney injury on in-hospital mortality, length of stay (LOS), and costs have not been well described. A consecutive sample of 19,982 adults who were admitted to an urban academic medical center, including 9210 who had two or more serum creatinine (SCr) determinations, was evaluated. The presence and degree of acute kidney injury were assessed using absolute and relative increases from baseline to peak SCr concentration during hospitalization. Large increases in SCr concentration were relatively rare (e.g., >or=2.0 mg/dl in 105 [1%] patients), whereas more modest increases in SCr were common (e.g., >or=0.5 mg/dl in 1237 [13%] patients). Modest changes in SCr were significantly associated with mortality, LOS, and costs, even after adjustment for age, gender, admission International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis, severity of illness (diagnosis-related group weight), and chronic kidney disease. For example, an increase in SCr >or=0.5 mg/dl was associated with a 6.5-fold (95% confidence interval 5.0 to 8.5) increase in the odds of death, a 3.5-d increase in LOS, and nearly 7500 dollars in excess hospital costs. Acute kidney injury is associated with significantly increased mortality, LOS, and costs across a broad spectrum of conditions. Moreover, outcomes are related directly to the severity of acute kidney injury, whether characterized by nominal or percentage changes in serum creatinine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes.

            Sepsis is the most common cause of acute kidney injury (AKI) in critical illness, but there is limited information on septic AKI. A prospective, observational study of critically ill patients with septic and nonseptic AKI was performed from September 2000 to December 2001 at 54 hospitals in 23 countries. A total of 1753 patients were enrolled. Sepsis was considered the cause in 833 (47.5%); the predominant sources of sepsis were chest and abdominal (54.3%). Septic AKI was associated with greater aberrations in hemodynamics and laboratory parameters, greater severity of illness, and higher need for mechanical ventilation and vasoactive therapy. There was no difference in enrollment kidney function or in the proportion who received renal replacement therapy (RRT; 72 versus 71%; P = 0.83). Oliguria was more common in septic AKI (67 versus 57%; P < 0.001). Septic AKI had a higher in-hospital case-fatality rate compared with nonseptic AKI (70.2 versus 51.8%; P < 0.001). After adjustment for covariates, septic AKI remained associated with higher odds for death (1.48; 95% confidence interval 1.17 to 1.89; P = 0.001). Median (IQR) duration of hospital stay for survivors (37 [19 to 59] versus 21 [12 to 42] d; P < 0.0001) was longer for septic AKI. There was a trend to lower serum creatinine (106 [73 to 158] versus 121 [88 to 184] mumol/L; P = 0.01) and RRT dependence (9 versus 14%; P = 0.052) at hospital discharge for septic AKI. Patients with septic AKI were sicker and had a higher burden of illness and greater abnormalities in acute physiology. Patients with septic AKI had an increased risk for death and longer duration of hospitalization yet showed trends toward greater renal recovery and independence from RRT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Animal models of sepsis: setting the stage.

              Sepsis is a state of disrupted inflammatory homeostasis that is often initiated by infection. The development and progression of sepsis is multi-factorial, and affects the cardiovascular, immunological and endocrine systems of the body. The complexity of sepsis makes the clinical study of sepsis and sepsis therapeutics difficult. Animal models have been developed in an effort to create reproducible systems for studying sepsis pathogenesis and preliminary testing of potential therapeutic agents. However, demonstrated benefit from a therapeutic agent in animal models has rarely been translated into success in human clinical trials. This review summarizes the common animal sepsis models and highlights how results of recent human clinical trials might affect their use.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                3 January 2012
                : 7
                : 1
                : e29893
                Affiliations
                [1 ]Department of Nephrology, University of São Paulo School of Medicine, São Paulo, São Paulo, Brazil
                [2 ]Department of Nephrology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
                [3 ]Department of Immunology, University of São Paulo, São Paulo, Brazil
                National Cancer Institute Staff Scientist Mouse Cancer Genetics Program, United States of America
                Author notes

                Performed the experiments: CER TRS RAV MHMS PSK. Analyzed the data: CER NOSC ACS LA. Contributed reagents/materials/analysis tools: CER TRS RAV MHMS PSK NOSC ACS LA. Wrote the paper: CER LA.

                Article
                PONE-D-11-22749
                10.1371/journal.pone.0029893
                3250486
                22235348
                258c5907-b429-44f4-bdf0-6c31ddc170b2
                Rodrigues et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 November 2011
                : 6 December 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Renal System
                Model Organisms
                Animal Models
                Medicine
                Anatomy and Physiology
                Renal System
                Critical Care and Emergency Medicine
                Nephrology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article