1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Revisiting alkaline aerobic lignin oxidation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alkaline aerobic oxidation is an effective way to produce valuable aromatic chemicals from lignin.

          Abstract

          Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and p-hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO 4 and LaMn 0.8Cu 0.2O 3, accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or p-hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Lignin valorization: improving lignin processing in the biorefinery.

          Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here, we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Catalytic Transformation of Lignin for the Production of Chemicals and Fuels.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2018
                2018
                : 20
                : 16
                : 3828-3844
                Affiliations
                [1 ]National Bioenergy Center
                [2 ]National Renewable Energy Laboratory
                [3 ]Golden
                [4 ]USA
                [5 ]Center for Surface Chemistry and Catalysis
                [6 ]Department of Forestry and Natural Resources and Purdue Center for Plant Biology
                [7 ]Purdue University
                [8 ]West Lafayette
                [9 ]Department of Chemical Engineering
                [10 ]Massachusetts Institute of Technology
                [11 ]Cambridge
                Article
                10.1039/C8GC00502H
                271eaf27-2b7a-4bd9-bf97-1b8aa656d734
                © 2018

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article