3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Organochlorine Pesticide Residues in Maternal Body on Infants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are many organochlorine pollutants in the environment, which can be directly or indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause damage to the lactation capacity of the mammary gland. In addition, because breast milk contains a lot of nutrients, it is the most important food source for new-born babies. If mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine contaminants can accumulate in breast milk fat and be passed to the infant through breast milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk to estimate the health risks of these contaminants to breastfed infants. In addition, toxic substances in the mother can also be passed to the fetus through the placenta, which is also something we need to pay attention to. This article introduces several types of OCPs, such as dichlorodiphenyltrichloroethane (DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and hexachlorobenzene (HCB), mainly expounds their effects on women’s lactation ability and infant health, and provides reference for maternal and infant health. In addition, some measures and methods for the control of organochlorine pollutants are also described here.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.

          The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 > zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 > genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endocrine-disrupting chemicals: an Endocrine Society scientific statement.

            There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exposure to pesticides and the associated human health effects.

              Pesticides are used widely to control weeds and insect infestation in agricultural fields and various pests and disease carriers (e.g., mosquitoes, ticks, rats, and mice) in houses, offices, malls, and streets. As the modes of action for pesticides are not species-specific, concerns have been raised about environmental risks associated with their exposure through various routes (e.g., residues in food and drinking water). Although such hazards range from short-term (e.g., skin and eye irritation, headaches, dizziness, and nausea) to chronic impacts (e.g., cancer, asthma, and diabetes), their risks are difficult to elucidate due to the involvement of various factors (e.g., period and level of exposure, type of pesticide (regarding toxicity and persistence), and the environmental characteristics of the affected areas). There are no groups in the human population that are completely unexposed to pesticides while most diseases are multi-causal to add considerable complexity to public health assessments. Hence, development of eco-friendly pesticide alternatives (e.g., EcoSMART) and Integrated Pest Management (IPM) techniques is desirable to reduce the impacts of pesticides. This paper was hence organized to present a comprehensive review on pesticides with respect to their types, environmental distribution, routes of exposure, and health impacts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                09 June 2022
                2022
                : 13
                : 890307
                Affiliations
                [1] 1 College of Animal Science and Technology, China Agricultural University , Beijing, China
                [2] 2 Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University , Yinchuan, China
                [3] 3 National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College , Beijing, China
                Author notes

                Edited by: Angel I. Melo, Universidad Autónoma de Tlaxcala, Mexico

                Reviewed by: Arely Anaya-Hernández, Autonomous University of Tlaxcala, Mexico; Mosudi Sosan, Obafemi Awolowo University, Nigeria

                *Correspondence: Wen-Zhi Ma, mawenzhi126@ 123456126.com ; Kun Yu, yukun@ 123456cau.edu.cn ; Zheng-Xing Lian, lianzhx@ 123456cau.edu.cn

                †These authors have contributed equally to this work

                This article was submitted to Developmental Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2022.890307
                9218079
                27459393-8e69-4d99-b73e-e5fbb5e2022d
                Copyright © 2022 Qi, Xu, Ma, Deng, Lian and Yu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 March 2022
                : 22 April 2022
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 189, Pages: 15, Words: 7251
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                organochlorine pesticides,breast milk,lactation,infant,estrogen endocrine disruptors

                Comments

                Comment on this article