1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Downregulation of PI3K/AKT/mTOR Pathway in Juglone-Treated Bovine Oocytes

      , , , , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have previously reported that juglone, a natural compound found in Juglandaceae with a wide range of biological activities, can reduces the developmental competence of bovine oocytes. In the current study, we investigated the possible mechanisms behind the toxicity of juglone and the relationship with PI3K/AKT/mTOR signaling during the in vitro maturation (IVM) of oocytes. Results show that oocyte exposure to juglone was associated with a significant decrease in filamentous actin (F-actin) accumulation. The RT-qPCR showed downregulation of the meiosis progression indicator GSK-3A, oocyte development marker BMP15, mitochondria fusion controlling MFN1, oxidative stress-related OGG1, and histone methylation-related EZH1, EZH2, SUZ12, G9a, and SUV39H2 genes in juglone-treated oocytes. In addition, glycolysis- (PFK1 and GLUT1), ATP synthesis- (ATPase8 and ATP5F1B), and OXPHOS-specific markers (SDHA and SDHD), as well as the oocyte survival regulators (SOD2, VEGF, and MAPK1) significantly decreased upon juglone treatment. Moreover, lower expression of PI3K, AKT, and mTOR was observed at the transcriptional and/or translational level(s). The autophagy markers LC3B and beclin-1 as well as the DNA damage-specific marker 8-OxoG displayed overexpression in juglone-exposed oocytes. Taken together, our results show that administration of juglone during the IVM can reduce the quality and developmental health of bovine oocytes through downregulation of the PI3K/AKT/mTOR pathway and its downstream signaling cascades.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.

          Deregulation of Akt/protein kinase B (PKB) is implicated in the pathogenesis of cancer and diabetes. Akt/PKB activation requires the phosphorylation of Thr308 in the activation loop by the phosphoinositide-dependent kinase 1 (PDK1) and Ser473 within the carboxyl-terminal hydrophobic motif by an unknown kinase. We show that in Drosophila and human cells the target of rapamycin (TOR) kinase and its associated protein rictor are necessary for Ser473 phosphorylation and that a reduction in rictor or mammalian TOR (mTOR) expression inhibited an Akt/PKB effector. The rictor-mTOR complex directly phosphorylated Akt/PKB on Ser473 in vitro and facilitated Thr308 phosphorylation by PDK1. Rictor-mTOR may serve as a drug target in tumors that have lost the expression of PTEN, a tumor suppressor that opposes Akt/PKB activation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PI3K/Akt: getting it right matters.

            T Franke (2008)
            The Akt serine/threonine kinase (also called protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. Significant progress has been made in clarifying its regulation by upstream kinases and identifying downstream mechanisms that mediate its effects in cells and contribute to signaling specificity. Here, we provide an overview of present advances in the field regarding the function of Akt in physiological and pathological cell function within a more generalized framework of Akt signal transduction. An emphasis is placed on the involvement of Akt in human diseases ranging from cancer to metabolic dysfunction and mental disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.

              Mitochondria are dynamic organelles that play a key role in energy conversion. Optimal mitochondrial function is ensured by a quality-control system tightly coupled to fusion and fission. In this connection, mitofusin 2 (Mfn2) participates in mitochondrial fusion and undergoes repression in muscle from obese or type 2 diabetic patients. Here, we provide in vivo evidence that Mfn2 plays an essential role in metabolic homeostasis. Liver-specific ablation of Mfn2 in mice led to numerous metabolic abnormalities, characterized by glucose intolerance and enhanced hepatic gluconeogenesis. Mfn2 deficiency impaired insulin signaling in liver and muscle. Furthermore, Mfn2 deficiency was associated with endoplasmic reticulum stress, enhanced hydrogen peroxide concentration, altered reactive oxygen species handling, and active JNK. Chemical chaperones or the antioxidant N-acetylcysteine ameliorated glucose tolerance and insulin signaling in liver-specific Mfn2 KO mice. This study provides an important description of a unique unexpected role of Mfn2 coordinating mitochondria and endoplasmic reticulum function, leading to modulation of insulin signaling and glucose homeostasis in vivo.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                January 2023
                January 03 2023
                : 12
                : 1
                : 114
                Article
                10.3390/antiox12010114
                9854430
                36670976
                275bfea7-6175-457f-87c5-e7cd309c019e
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article