3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-fidelity phenotyping: richness and freedom from bias

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electronic health record phenotyping is the use of raw electronic health record data to assert characterizations about patients. Researchers have been doing it since the beginning of biomedical informatics, under different names. Phenotyping will benefit from an increasing focus on fidelity, both in the sense of increasing richness, such as measured levels, degree or severity, timing, probability, or conceptual relationships, and in the sense of reducing bias. Research agendas should shift from merely improving binary assignment to studying and improving richer representations. The field is actively researching new temporal directions and abstract representations, including deep learning. The field would benefit from research in nonlinear dynamics, in combining mechanistic models with empirical data, including data assimilation, and in topology. The health care process produces substantial bias, and studying that bias explicitly rather than treating it as merely another source of noise would facilitate addressing it.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

          Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of type 2 diabetes subgroups through topological analysis of patient similarity.

            Type 2 diabetes (T2D) is a heterogeneous complex disease affecting more than 29 million Americans alone with a rising prevalence trending toward steady increases in the coming decades. Thus, there is a pressing clinical need to improve early prevention and clinical management of T2D and its complications. Clinicians have understood that patients who carry the T2D diagnosis have a variety of phenotypes and susceptibilities to diabetes-related complications. We used a precision medicine approach to characterize the complexity of T2D patient populations based on high-dimensional electronic medical records (EMRs) and genotype data from 11,210 individuals. We successfully identified three distinct subgroups of T2D from topology-based patient-patient networks. Subtype 1 was characterized by T2D complications diabetic nephropathy and diabetic retinopathy; subtype 2 was enriched for cancer malignancy and cardiovascular diseases; and subtype 3 was associated most strongly with cardiovascular diseases, neurological diseases, allergies, and HIV infections. We performed a genetic association analysis of the emergent T2D subtypes to identify subtype-specific genetic markers and identified 1279, 1227, and 1338 single-nucleotide polymorphisms (SNPs) that mapped to 425, 322, and 437 unique genes specific to subtypes 1, 2, and 3, respectively. By assessing the human disease-SNP association for each subtype, the enriched phenotypes and biological functions at the gene level for each subtype matched with the disease comorbidities and clinical differences that we identified through EMRs. Our approach demonstrates the utility of applying the precision medicine paradigm in T2D and the promise of extending the approach to the study of other complex, multifactorial diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network.

              Genetic studies require precise phenotype definitions, but electronic medical record (EMR) phenotype data are recorded inconsistently and in a variety of formats. To present lessons learned about validation of EMR-based phenotypes from the Electronic Medical Records and Genomics (eMERGE) studies. The eMERGE network created and validated 13 EMR-derived phenotype algorithms. Network sites are Group Health, Marshfield Clinic, Mayo Clinic, Northwestern University, and Vanderbilt University. By validating EMR-derived phenotypes we learned that: (1) multisite validation improves phenotype algorithm accuracy; (2) targets for validation should be carefully considered and defined; (3) specifying time frames for review of variables eases validation time and improves accuracy; (4) using repeated measures requires defining the relevant time period and specifying the most meaningful value to be studied; (5) patient movement in and out of the health plan (transience) can result in incomplete or fragmented data; (6) the review scope should be defined carefully; (7) particular care is required in combining EMR and research data; (8) medication data can be assessed using claims, medications dispensed, or medications prescribed; (9) algorithm development and validation work best as an iterative process; and (10) validation by content experts or structured chart review can provide accurate results. Despite the diverse structure of the five EMRs of the eMERGE sites, we developed, validated, and successfully deployed 13 electronic phenotype algorithms. Validation is a worthwhile process that not only measures phenotype performance but also strengthens phenotype algorithm definitions and enhances their inter-institutional sharing.
                Bookmark

                Author and article information

                Journal
                J Am Med Inform Assoc
                J Am Med Inform Assoc
                jamia
                Journal of the American Medical Informatics Association : JAMIA
                Oxford University Press
                1067-5027
                1527-974X
                March 2018
                12 October 2017
                12 October 2017
                : 25
                : 3
                : 289-294
                Affiliations
                Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
                Author notes
                Corresponding Author: George Hripcsak, Department of Biomedical Informatics, Columbia University Medical Center, 622 W 168 th St, PH20, New York, NY 10032, USA. E-mail: hripcsak@ 123456columbia.edu . Phone:(212) 305-5712
                Article
                ocx110
                10.1093/jamia/ocx110
                7282504
                29040596
                27c7b998-3e05-4d62-b3d1-ab82634b712f
                © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 16 June 2017
                : 7 August 2017
                : 6 September 2017
                Page count
                Pages: 6
                Funding
                Funded by: NIH, DOI 10.13039/100000002;
                Award ID: R01 LM006910
                Award ID: U01 HG008680
                Categories
                Perspective

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article