35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite recent advances in food production technology, food-borne diseases (FBD) remain a challenging public health concern. In several countries, including Brazil, Clostridium perfringens is among the five main causative agents of food-borne diseases. The present study determines antimicrobial activities of essential oils of six condiments commonly used in Brazil, viz., Ocimum basilicum L. (basil), Rosmarinus officinalis L. (rosemary), Origanum majorana L. (marjoram), Mentha × piperita L. var. Piperita (peppermint), Thymus vulgaris L. (thyme) and Pimpinella anisum L. (anise) against C. perfringens strain A. Chemical compositions of the oils were determined by GC–MS (gas chromatography–mass spectrometry). The identities of the isolated compounds were established from the respective Kováts indices, and a comparison of mass spectral data was made with those reported earlier. The antibacterial activity was assessed from minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the microdilution method. Minimum inhibitory concentration values were 1.25 mg mL −1 for thyme, 5.0 mg mL −1 for basil and marjoram, and 10 mg mL −1 for rosemary, peppermint and anise. All oils showed bactericidal activity at their minimum inhibitory concentration, except anise oil, which was only bacteriostatic. The use of essential oils from these common spices might serve as an alternative to the use of chemical preservatives in the control and inactivation of pathogens in commercially produced food systems.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria.

          J Eloff (1998)
          Agar diffusion techniques are used widely to assay plant extracts for antimicrobial activity, but there are problems associated with this technique. A micro-dilution technique was developed using 96-well microplates and tetrazolium salts to indicate bacterial growth. p-Iodonitrotetrazolium violet [0.2 mg/ml] gave better results than tetrazolium red or thiazolyl blue. The method is quick, worked well with Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli and with non-aqueous extracts from many different plants. The method gave reproducible results; required only 10-25 microliters of extract to determine minimal inhibitory concentrations, distinguished between microcidal and microstatic effects, and provided a permanent record of the results. Using S. aureus, and a Combretum molle extract, the technique was 32 times more sensitive than agar diffusion techniques and was not sensitive to culture age of the test organism up to 24 hours. The S. aureus culture could be stored up to 10 days in a cold room with little effect on the assay results. This method was useful in screening plants for antimicrobial activity and for the bioassay-guided isolation of antimicrobial compounds from plants. MIC values determined for sulfisoxazole, norfloxacin, gentamicin, and nitrofuratoin were similar to values indicated in the literature but values obtained with trimethroprim and ampicillin were higher with some bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus.

            The natural antimicrobial compound carvacrol shows a high preference for hydrophobic phases. The partition coefficients of carvacrol in both octanol-water and liposome-buffer phases were determined (3.64 and 3.26, respectively). Addition of carvacrol to a liposomal suspension resulted in an expansion of the liposomal membrane. Maximum expansion was observed after the addition of 0.50 micromol of carvacrol/mg of L-alpha-phosphatidylethanolamine. Cymene, a biological precursor of carvacrol which lacks a hydroxyl group, was found to have a higher preference for liposomal membranes, thereby causing more expansion. The effect of cymene on the membrane potential was less pronounced than the effect of carvacrol. The pH gradient and ATP pools were not affected by cymene. Measurement of the antimicrobial activities of compounds similar to carvacrol (e.g., thymol, cymene, menthol, and carvacrol methyl ester) showed that the hydroxyl group of this compound and the presence of a system of delocalized electrons are important for the antimicrobial activity of carvacrol. Based on this study, we hypothesize that carvacrol destabilizes the cytoplasmic membrane and, in addition, acts as a proton exchanger, thereby reducing the pH gradient across the cytoplasmic membrane. The resulting collapse of the proton motive force and depletion of the ATP pool eventually lead to cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations.

              Chemical composition, antioxidant and antimicrobial activities of the essential oils from aerial parts of basil (Ocimum basilicum L.) as affected by four seasonal, namely summer, autumn, winter and spring growing variation were investigated. The hydro-distilled essential oils content ranged from 0.5% to 0.8%, the maximum amounts were observed in winter while minimum in summer. The essential oils consisted of linalool as the most abundant component (56.7-60.6%), followed by epi-α-cadinol (8.6-11.4%), α-bergamotene (7.4-9.2%) and γ-cadinene (3.2-5.4%). Samples collected in winter were found to be richer in oxygenated monoterpenes (68.9%), while those of summer were higher in sesquiterpene hydrocarbons (24.3%). The contents of most of the chemical constituents varied significantly (p<0.05) with different seasons. The essential oils investigated, exhibited good antioxidant activity as measurements by DPPH free radical-scavenging ability, bleaching β-carotene in linoleic acid system and inhibition of linoleic acid oxidation. Evaluation of antimicrobial activity of the essential oils and linalool, the most abundant component, against bacterial strains: Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pasteurella multocida and pathogenic fungi Aspergillus niger, Mucor mucedo, Fusarium solani, Botryodiplodia theobromae, Rhizopus solani was assessed by disc diffusion method and measurement of determination of minimum inhibitory concentration. The results of antimicrobial assays indicated that all the tested microorganisms were affected. Both the antioxidant and antimicrobial activities of the oils varied significantly (p<0.05), as seasons changed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Braz J Microbiol
                Braz. J. Microbiol
                Brazilian Journal of Microbiology
                Elsevier
                1517-8382
                1678-4405
                02 March 2016
                Apr-Jun 2016
                02 March 2016
                : 47
                : 2
                : 424-430
                Affiliations
                [a ]Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATES Lajeado, RS, Brazil
                [b ]Centro de Ciências Exatas e Tecnológicas, Centro Universitário UNIVATES, Lajeado, RS, Brazil
                [c ]Departamento de Química, Universidade Federal de Roraima Boa Vista, RR, Brazil
                Author notes
                [* ] Corresponding author. eduardome@ 123456univates.br
                Article
                S1517-8382(16)00061-7
                10.1016/j.bjm.2015.10.001
                4874616
                26991289
                28582339-a0bc-46ee-8d89-14adf7c4b40f
                © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 August 2014
                : 2 October 2015
                Categories
                Food Microbiology

                food-borne disease,antimicrobial activity,clostridium perfringens,spices,essential oils

                Comments

                Comment on this article