6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and Application of CRISPR/Cas in Microbial Biotechnology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers

            Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. This fusion protein catalyzes acetylation of histone H3 lysine 27 at its target sites, corresponding with robust transcriptional activation of target genes from promoters, proximal enhancers, and distal enhancers. Gene activation by the targeted acetyltransferase is highly specific across the genome. In contrast to conventional dCas9-based activators, the acetyltransferase effectively activates genes from enhancer regions and with individual guide RNAs. The core p300 domain is also portable to other programmable DNA-binding proteins. These results support targeted acetylation as a causal mechanism of transactivation and provide a new robust tool for manipulating gene regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting DNA double-strand breaks with TAL effector nucleases.

              Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                30 June 2020
                2020
                : 8
                : 711
                Affiliations
                [1] 1Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing, China
                [2] 2Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin, China
                Author notes

                Edited by: Yi Wang, Auburn University, United States

                Reviewed by: Yuan Qiao, Nanyang Technological University, Singapore; Mingfeng Cao, University of Illinois at Urbana-Champaign, United States

                *Correspondence: Shuobo Shi, shishuobo@ 123456mail.buct.edu.cn

                This article was submitted to Synthetic Biology, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.00711
                7338305
                32695770
                28a24e6a-95b3-4831-8028-ba5f924a79c2
                Copyright © 2020 Ding, Zhang and Shi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 April 2020
                : 08 June 2020
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 230, Pages: 22, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Funded by: China Postdoctoral Science Foundation 10.13039/501100002858
                Categories
                Bioengineering and Biotechnology
                Review

                crispr/cas,guide rna,genome editing,gene regulation,microbial biotechnology

                Comments

                Comment on this article