5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CSNK2A1 Promotes Gastric Cancer Invasion Through the PI3K-Akt-mTOR Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Casein kinase 2 a1 (CSNK2A1) has been shown to be involved in tumorigenesis by enhancing several oncogenic signaling pathways in various cancers. However, the function and mechanism of CSNK2A1 in gastric cancer remain unclear, and this study aimed to elucidate the role of CSNK2A1 in gastric cancer.

          Methods

          CSNK2A1 expression was assessed by Western blot and qPCR in four gastric cancer (GC) cell lines and one normal gastric epithelial cell line. Stable cancer cell lines with CSNK2A1 gene overexpression or knockdown were established to investigate the function and mechanism of CSNK2A1 in GC cells.

          Results

          CSNK2A1 expression was higher in GC cells than in normal gastric epithelial cells. Stable overexpression of CSNK2A1 in SNU216 cells significantly increased cellular proliferation, invasion, and migration. Silencing CSNK2A1 expression in SGC-790 cells effectively inhibited its oncogenic function. We further verified that epithelial-mesenchymal transition (EMT) was affected by CSNK2A1 and that CSNK2A1 promotes GC cell invasion through the PI3K-Akt-mTOR signaling pathway.

          Conclusion

          Our findings suggested that CSNK2A1 plays important oncogenic roles in GC invasion via EMT and the PI3K-Akt-mTOR signaling pathway and that CSNK2A1 may serve as a novel prognostic and/or therapeutic target in GC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          One-thousand-and-one substrates of protein kinase CK2?

          CK2 (formerly termed "casein kinase 2") is a ubiquitous, highly pleiotropic and constitutively active Ser/Thr protein kinase whose implication in neoplasia, cell survival, and virus infection is supported by an increasing number of arguments. Here an updated inventory of 307 CK2 protein substrates is presented. More than one-third of these are implicated in gene expression and protein synthesis as being either transcriptional factors (60) or effectors of DNA/RNA structure (50) or translational elements. Also numerous are signaling proteins and proteins of viral origin or essential to virus life cycle. In comparison, only a minority of CK2 targets (a dozen or so) are classical metabolic enzymes. An analysis of 308 sites phosphorylated by CK2 highlights the paramount relevance of negatively charged side chains that are (by far) predominant over any other residues at positions n+3 (the most crucial one), n+1, and n+2. Based on this signature, it is predictable that proteins phosphorylated by CK2 are much more numerous than those identified to date, and it is possible that CK2 alone contributes to the generation of the eukaryotic phosphoproteome more so than any other individual protein kinase. The possibility that CK2 phosphosites play some global role, e.g., by destabilizing alpha helices, counteracting caspase cleavage, and generating adhesive motifs, will be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein kinase CK2 in health and disease: CK2: a key player in cancer biology.

            Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks.

              CK2 was the first protein kinase identified and is required for the proliferation and survival of mammalian cells. Here, we have identified an unanticipated role for CK2. We show that this essential protein kinase phosphorylates the scaffold protein XRCC1 and thereby enables the assembly and activity of DNA single-strand break repair protein complexes in vitro and at sites of chromosomal breakage. Moreover, we show that inhibiting XRCC1 phosphorylation by mutation of the CK2 phosphorylation sites or preventing CK2 activity using a highly specific inhibitor ablates the rapid repair of cellular DNA single-strand breaks by XRCC1. These data identify a direct role for CK2 in the repair of chromosomal DNA strand breaks and in maintaining genetic integrity.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                CMAR
                cancmanres
                Cancer Management and Research
                Dove
                1179-1322
                02 December 2019
                2019
                : 11
                : 10135-10143
                Affiliations
                [1 ]Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong 250021, People’s Republic of China
                [2 ]Departments of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University , Jinan, Shandong 250031, People’s Republic of China
                [3 ]Forensic Science Center, Jining Medical University , Jining, Shandong 272067, People’s Republic of China
                [4 ]Cancer Pathology Institute, Jining Medical University , Jining, Shandong 272000, People’s Republic of China
                [5 ]Departments of Oncology, Affiliated Hospital of Jining Medical University , Jining, Shandong 272000, People’s Republic of China
                Author notes
                Correspondence: Weibo Wang Tel +86 151 6888 8787Fax +86 531 5862 8751 Email wbwb1620@163.com
                Author information
                http://orcid.org/0000-0001-5190-3718
                Article
                222620
                10.2147/CMAR.S222620
                6897054
                31819646
                28bf6117-fc79-40da-826e-d171c3e58b18
                © 2019 Jiang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 13 July 2019
                : 12 November 2019
                Page count
                Figures: 4, References: 34, Pages: 9
                Categories
                Original Research

                Oncology & Radiotherapy
                gastric cancer,csnk2a1,function,mechanism
                Oncology & Radiotherapy
                gastric cancer, csnk2a1, function, mechanism

                Comments

                Comment on this article