1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acceptor-induced bulk dielectric loss in superconducting circuits on silicon

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The performance of superconducting quantum circuits is primarily limited by dielectric loss due to interactions with two-level systems (TLS). State-of-the-art circuits with engineered material interfaces are approaching a limit where dielectric loss from bulk substrates plays an important role. However, a microscopic understanding of dielectric loss in crystalline substrates is still lacking. In this work, we show that boron acceptors in silicon constitute a strongly coupled TLS bath for superconducting circuits. We discuss how the electronic structure of boron acceptors leads to an effective TLS response in silicon. We sweep the boron concentration in silicon and demonstrate the bulk dielectric loss limit from boron acceptors. We show that boron-induced dielectric loss can be reduced in a magnetic field due to the spin-orbit structure of boron. This work provides the first detailed microscopic description of a TLS bath for superconducting circuits, and demonstrates the need for ultrahigh purity substrates for next-generation superconducting quantum processors.

          Related collections

          Author and article information

          Journal
          26 February 2024
          Article
          2402.17155
          28eecfd2-7106-4ce4-a404-ea3d27f3b2ef

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          quant-ph cond-mat.mes-hall

          Quantum physics & Field theory,Nanophysics
          Quantum physics & Field theory, Nanophysics

          Comments

          Comment on this article