1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DOOBNet: Deep Object Occlusion Boundary Detection from an Image

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Object occlusion boundary detection is a fundamental and crucial research problem in computer vision. This is challenging to solve as encountering the extreme boundary/non-boundary class imbalance during training an object occlusion boundary detector. In this paper, we propose to address this class imbalance by up-weighting the loss contribution of false negative and false positive examples with our novel Attention Loss function. We also propose a unified end-to-end multi-task deep object occlusion boundary detection network (DOOBNet) by sharing convolutional features to simultaneously predict object boundary and occlusion orientation. DOOBNet adopts an encoder-decoder structure with skip connection in order to automatically learn multi-scale and multi-level features. We significantly surpass the state-of-the-art on the PIOD dataset (ODS F-score of .668) and the BSDS ownership dataset (ODS F-score of .555), as well as improving the detecting speed to as 0.037s per image.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          U-Net: Convolutional Networks for Biomedical Image Segmentation

          There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Learning to detect natural image boundaries using local brightness, color, and texture cues.

            The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Richer Convolutional Features for Edge Detection

                Bookmark

                Author and article information

                Journal
                10 June 2018
                Article
                1806.03772
                29335432-0a25-4294-8e61-ca939a781f4c

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article